

PROGRAMA DE FOMENTO DE LA PRODUCCIÓN AGROPECUARIA SOSTENIBLE (PFPAS)

PROGRAMA DE GANADERÍA Y MANEJO DEL MEDIO AMBIENTE (GAMMA)

ESTUDIO

DETERMINACIÓN DEL BALANCE DE GASES EFECTO INVERNADERO EN FINCAS GANADERAS DE LA REGIÓN CHOROTEGA, COMO ELEMENTO DE REFERENCIA PARA MEJORAR LA COMPETITIVIDAD

SP No: 14-2009

INFORME FINAL

JUNIO DEL 2010

TABLA DE CONTENIDO

1.	ASPECTOS GENERALES	26
1.1.	GANADERÍA EN LA REGIÓN	26
1.2.	CAMBIO CLIMÁTICO EN LA REGIÓN	. 28
1.3.	Emisión de gases de efecto invernadero y su efecto en el cambio climático	29
1.3.1.	La relación de la ganadería y los Gases de Efecto Invernadero en Costa Rica	30
2.	OBJETIVOS	32
2.1.	GENERAL	.32
2.2.	ESPECÍFICOS	.32
3.	CAPITULO 1: IDENTIFICACIÓN Y CARACTERIZACIÓN DE AL MENOS 16 FINC	AS
REPR	ESENTATIVAS DE LA REGIÓN CHOROTEGA	. 33
3.1.	Resumen	
3.2.	Metodología	34
3.2.1.	Selección de fincas participantes en el estudio:	34
3.2.2.	Encuestas	. 35
3.2.3.	Bases de datos	36
3.2.4.	Caracterización de las fincas	36
3.2.5.	Usos de la tierra de las fincas	56
3.2.6.	Levantamiento de los usos del suelo a nivel de fincas	56
3.2.7.	Elaboración de mapas	. 57
3.2.8.	CONCLUSIONES, FALTA	. 58
3.2.9.	BIBLIOGRAFÍA	. 59
4.	CAPITULO 2: Almacenamiento de carbono en el suelo y biomasa arbórea en usos de	e la
tierra e	en paisajes ganaderos de la región de Guanacaste	60
4.1.	Resumen	60
4.2.	Introducción	
4.3.	Metodología	63
4.3.1.	Almacenamiento de Carbono de la biomasa arriba del suelo	63
4.3.2.	Toma de datos de suelos	65
<i>1</i> .	Establecimiento de calicatas	65
<i>2</i> .	Toma de muestras de suelo	66
<i>3</i> .	Toma de muestras para densidad aparente	66
<i>4</i> .	Toma de muestras de suelo para análisis químicos	66
<i>5</i> .	Análisis de laboratorio	67
4.3.3.	Cálculo de carbono en la biomasa aérea	67
4.3.4.	Modelación de Carbono	69
4.4.	Resultados	. 73
4.4.1.	Descripción de los usos de la tierra	. 73
4.4.2.	Composición arbórea a nivel de territorio	. 76
4.4.3.	Comparación de la diversidad arbórea entre usos de la tierra	. 78

4.4.4.	Estructura arbórea	. 78
4.4.5.	Composición arbórea entre usos de la tierra	. 79
4.4.6.	Pasturas	. 79
4.4.7.	Plantaciones Forestales	. 80
4.4.8.	Carbono de suelo (30 cm de profundidad)	. 82
4.4.9.	Depósito de Carbono en biomasa arbórea con dap > 10 cm	. 82
4.4.10.	Carbono total	. 83
4.4.11.	Modelación de carbono	. 85
4.4.12.	Potencial del almacenamiento de carbono en la región	. 88
4.5.	Conclusiones	. 94
4.6.	Bibliografía	. 95
5.	CAPITULO 3: EMISIONES DE GASES DE EFECTO INVERNADERO EN SISTEM	[AS
GANA	DEROS EN LA PROVINCIA DE GUANACASTE	. 99
5.1.	Resumen	. 99
5.2.	Introducción	. 99
5.3.	Metodología	100
5.3.1.	Caracterización de las fincas ganaderas dentro del estudio en la región de Chorotega	100
5.3.2.	Principales supuestos para la cuantificación de GEI en los sistemas ganaderos menciona 102	dos
5.3.3.	Diagrama y presentación de las fronteras del análisis	104
	Fases del cálculo de emisiones	
5.4.	Resultados	109
5.5.	Conclusiones y modelación	125
5.6.	BIBLIOGRAFIA	127
6.	CAPITULO 4: BALANCE DE GASES DE EFECTO INVERNADERO EN 6 SISTEM	[AS
GANA	DEROS EN LA PROVINCIA DE GUANACASTE	128
6.1.	Resumen	128
6.2.	Introducción	128
6.3.	Metodología	129
6.3.1.	Cuantificación de las remociones de carbono	130
6.3.2.	Selección de los usos de suelo	131
6.4.	Resultados	133
6.4.1.	Balance de GEI	133
a.	Finca código 202:	133
b.	Finca código 206:	134
c.	Finca código 209:	135
d.	Finca código 210:	136
e.	Finca código 213:	
f.	Finca código 216:	138
6.5.	Conclusiones	139
6.6.	BIBLIOGRAFIA	141

7.	CAPITULO 5: VALORACIÓN DE LA HUELLA DE CARBONO A PARTIR D	EL
ENFO	QUE DE ANÁLISIS DE CICLO DE VIDA EN FINCAS GANADERAS EN 1	ĹΑ
PROV	INCIA DE GUANACASTE1	.42
7.1.	Resumen1	.42
7.2.	Introducción	.42
7.3.	Metodología	.43
7.4.	Resultados	.49
7.5.	Conclusiones	.59
7.6.	BIBLIOGRAFÍA1	
8.	CAPITULO 6 POTENCIAL DE PROVISIÓN DE SERVICIOS ECOSISTÉMICOS I	EN
PAISA	AJES GANADEROS DE LA REGIÓN CHOROTEGA1	
8.1.	Resumen1	.64
8.2.	Introducción	.64
8.3.	Metodología	.65
8.4.	Ganadería en la Región Chorotega	
8.5.	Servicios Ecosistémicos. 1	.68
8.5.1.	Conservación de la biodiversidad	.69
8.5.2.	Recurso hídrico	.71
8.5.3.	Fijación de carbono	.74
8.5.4.	Belleza escénica	.76
8.6.	Cantones con potencial para provisión de servicios ecosistémicos en sistemas ganaderos 1	.79
8.7.	Conclusiones	.81
8.8.	Revisión de Literatura:1	.83
9.	ANEXOS1	.84
	INDICE DE FIGURAS	
Figura	1. Mapa de Ubicación de las fincas muestreadas en la Región Chorotega, Costa Rica	ono
-	3. Esquema de las parcelas para la toma de datos componente arbóreo	
-	4 Distribución de las calicatas para la toma de muestras de suelo	
-	5. Distribución de las especies arbóreas basada en el estado de conservación registrada en	
	erización vegetal de las fincas ganaderas de la región de Chorotega 2010.	
_	6. Principales usos potenciales registrados para las especies de árboles en las fine	
-	eras en la Región de Chorotega, basado en Jiménez <i>et al.</i> 2002	
-	7. Carbono total del suelo a 30 cm de profundidad en distintos usos de la tierra en la regiorotega, Costa Rica. 2010. BS: bosque secundarios, BFG: banco forrajero de gramíneas, BF	
	forrajero de leñosas, PF: plantaciones forestales, PMA: pastura mejorada con árboles y F	
	a degradada. Letras diferentes indican diferencias significativas según prueba de LSD Fisl	
	5. Las barras indican el error estándar.	

Figura 8. Carbono en biomasa arbórea en seis usos de la tierra en la región de Chorotega, Cost	ta
Rica. 2010. BS: bosque secundarios, BFG: banco forrajero de gramíneas, BFL: banco forrajero d	le
leñosas, PF: plantaciones forestales, PMA: pastura mejorada con árboles y PD: pastura degradada	a.
Letras diferentes indican diferencias significativas según prueba de LSD Fisher P≤0,05. Las barra	
indican el error estándar.	
Figura 9. Carbono Total en seis usos de la tierra en la región de Chorotega, Costa Rica. 2010. BS	
bosque secundarios, BFG: banco forrajero de gramíneas, BFL: banco forrajero de leñosas, PI	
plantaciones forestales, PMA: pastura mejorada con árboles y PD: pastura degradada. Letra	
diferentes indican diferencias significativas según prueba de LSD Fisher P≤0,05. Las barras indica	
el error estándar	
Figura 10. Comparación del aporte al almacenamiento de Carbono en los dos componente	
evaluados en los seis usos de la tierra evaluados en la región de Chorotega, 2010. BS: bosqu	
secundarios, BFG: banco forrajero de gramíneas, BFL: banco forrajero de leñosas, PF: plantacione	
forestales, PMA: pastura mejorada con árboles y PD: pastura degradada	
Figura 11. Modelación potencial del carbono almacenado en pasturas degradadas en la región d	
Chorotega	
Figura 12. Modelación potencial del carbono almacenado en pasturas mejoradas sin arboles en la	
región de Chorotega	
Figura 13. Modelación potencial del carbono almacenado en pasturas mejoradas con baja densida	
de arboles en la región de Chorotega	
Figura 14. Modelación potencial del carbono almacenado en pasturas mejoradas con alta densida	
de arboles en la región de Chorotega.	
Figura 15. Modelación potencial del carbono almacenado en plantaciones forestales de teca en l	
región de Chorotega.	
Figura 16. Modelación potencial del carbono almacenado en bosques secundariosen la región d	
Chorotega	
Figura 17. Fases que intervienen en la actividad ganadera	
Figura 18. Emisiones de GEI dentro y fuera de la finca	
Figura 19. Mapas del uso de suelo de la finca	
Figura 20. Emisiones de GEI dentro y fuera de la finca	
Figura 21. Mapas del uso de suelo de la finca	
Figura 22. Emisiones de GEI dentro y fuera de la finca	
Figura 23. Mapas del uso de suelo de la finca	
Figura 24. Emisiones de GEI dentro y fuera de la finca	
Figura 25. Mapas del uso de suelo de la finca11	4
Figura 26. Emisiones de GEI dentro y fuera de la finca	6
Figura 27. Mapas del uso de suelo de la finca11	6
Figura 28. Emisiones de GEI dentro y fuera de la finca	7
Figura 29. Mapas del uso de suelo de la finca	7
Figura 30. Emisiones de GEI dentro y fuera de la finca	8
Figura 31. Mapas del uso de suelo de la finca	9
Figura 32. Emisiones de GEI dentro y fuera de la finca	9
Figura 33. Mapas del uso de suelo de la finca	0
Figura 34. Emisiones de GEI dentro y fuera de la finca	0

Figura 35. Mapas del uso de suelo de la finca	120
Figura 36. Emisiones de GEI dentro y fuera de la finca	121
Figura 37. Mapas del uso de suelo de la finca	121
Figura 38. Emisiones de GEI dentro y fuera de la finca	122
Figura 39. Mapas del uso de suelo de la finca	122
Figura 40. Emisiones de GEI dentro y fuera de la finca	123
Figura 41. Mapas del uso de suelo de la finca	123
Figura 42. Emisiones de GEI dentro y fuera de la finca	124
Figura 43. Mapas del uso de suelo de la finca	124
Figura 44. Escenarios de reducción de emisiones por mejoras en la calidad de la diet	a y en
productividad	
Figura 45. Mapa de uso de suelo y balance de GEI	133
Figura 46. Mapa de uso de suelo y balance de GEI	134
Figura 47. Mapa de uso de suelo y balance de GEI	135
Figura 48. Mapa de uso de suelo y balance de GEI	136
Figura 49. Mapa de uso de suelo y balance de GEI	137
Figura 50. Mapa de uso de suelo y balance de GEI	138
Figura 51. Diagrama de los límites del análisis de ACV con sus actividades y pr	rocesos
considerados que generan GEI	145
Figura 52. Emisiones de GEI producto de actividades en finca	150
Figura 53. Emisiones de GEI por procesos fisiológicos de los animales	150
Figura 54. Emisiones de GEI por el proceso de generación eléctrica	151
Figura 55. Emisiones de GEI por la fabricación de insumos utilizados en la producción ganad	lera152
Figura 56. Procesos involucrados en la producción de fertilizantes nitrogenados en las prin	
plantas de la Comunidad Europea y sus emisiones de GEI.	153
Figura 57. Procesos involucrados en la producción de Urea en las principales plantas	s de la
Comunidad Europea y sus emisiones de GEI.	153
Figura 58. Procesos involucrados en la producción de concentrados en las principales planto	
Comunidad Europea y sus emisiones de GEI.	155
Figura 59. Procesos involucrados en la producción de herbicidas en las principales planta	ıs de la
Comunidad Europea y sus emisiones de GEI.	156
Figura 60. Emisiones de GEI por unidad final del producto para una finca doble propósito	157
Figura 61. Ciclo de la huella de carbono bajo el contexto de la carbono neutralidad	158
Figura 62. Limites en la curva de producción para mantener el logro de la carbono neutrali	idad en
fincas ganaderas doble propósitos en la región de Chorotega	159
Figura 63. Distribución de las emisiones a lo largo del análisis.	160
Figura 65. Esquema Metodológico del análisis espacial para estimar el Potencial de provis	sión de
Servicios ecosistémicos (Agua, Biodiversidad, Carbono y Belleza escénica) en ter-	ritorios
dominados por la ganadería en la Región Chorotega	
Figura 66. Mapa distribución de fincas (a) y orientación productiva (b) de fincas ganadera	
Región Chorotega.	167
Figura 67. Mapa Densidad de Fincas Ganaderas en la Región Chorotega	168

Figura 68. Esquema ilustrativo para estimar el Potencial de provisión de Servicios ecosistémicos
(Agua, Biodiversidad, Carbono y Belleza escénica) en territorios dominados por la ganadería en la
Región Chorotega
Figura 69. Mapa de zonas con alto potencial para provisión y conservación de la Biodiversidad en
el paisaje ganadero de la Región Chorotega
Figura 70. Foto de Cursos de agua sin protección riparia alguna cursan fincas ganaderas en la región
Chorotega. 172
Figura 71. Mapa de zonas con alto potencial para provisión y conservación Recursos hídricos en
paisajes ganaderos de la Región Chorotega.
Figura 72. Mapa de zonas con alto potencial para provisión y conservación Recursos hídricos en
paisajes ganaderos de la Región Chorotega
Figura 73. Mapa de zonas con alto potencial para Belleza Escénica en paisajes ganaderos de la
Región Chorotega
INDICE DE CUADROS
Cuadro 1. Listado de fincas seleccionadas para el estudio de determinación de Gases Efecto
Invernadero en la Región Chorotega
Cuadro 2. Datos Sociales-Productivos
Cuadro 3. Sistema productivo
Cuadro 4. Uso del la tierra en las fincas del estudio
Cuadro 5. Consolidado de usos de la tierra de las fincas seleccionadas
Cuadro 6. Inventario Animal hoja horizontal
Cuadro 7. Flujos de ingreso en la finca
Cuadro 8. Innovaciones de la finca
Cuadro 9. Producción láctea
Cuadro 10. Ganancia de Peso
Cuadro 11. Tipo de pasto que posee su potrero
Cuadro 12. Arboles en potreros y sus usos
Cuadro 13. Adaptación al cambio climático
Cuadro 14. Suplementación animal
Cuadro 15. Manejo de residuos
Cuadro 16. Fuentes de agua
Cuadro 17. Tenencia del predio
Cuadro 18. Alternativas para el secuestro de Carbono
Cuadro 19. Formato para la caracterización vegetal
Cuadro 20. Formato para toma de datos de DAP y altura en el componente arbóreo en pasturas 68
Cuadro 21. Parámetros utilizados para la creación de los modelos de almacenamiento de carbono en
biomasa en los cinco modelos
Cuadro 22. Datos de temperatura y Precipitación promedio para la región de Chorotega durante
1999-2009. Estación meteorológica de Liberia, Costa Rica
Cuadro 23. Parámetros utilizados para la estimación del carbono almacenado en el suelo y en
biomasa

Cuadro 24. Características física y de manejo de distintos usos de la tierra en Esparza, Co	sta Rica.
	75
Cuadro 25. Valores promedio, error estándar y los valores máximos y mínimos del tie	empo de
establecimiento de los seis usos de la tierra evaluados en la Región de Chorotega, 2010	76
Cuadro 26. Índice de valor de importancia (IVI) de las 10 especies arbóreas presentes en la	as fincas
ganaderas evaluadas en la región de Chorotega.	76
Cuadro 27. Número de individuos y especies totales y promedio por los usos de la tierra e	valuados
en las fincas ganaderas en la Región de Chorotega 2010. Letras distintas entre filas rep	resentan
diferencias significativa p<0,005, prueba de LSD Ficher.	78
Cuadro 28. Altura Total y Diámetro a la altura el pecho (DAP) de los usos evaluados	78
Cuadro 29. Indice de valor de importancia (IVI) de las 10 especies arbóreas presente	s en los
bosques secundarios en la región de Chorotega, 2010	79
Cuadro 30. Índice de valor de importancia (IVI) de las especies arbóreas presentes en las	pasturas
evaluadas en la región de Chorotega, 2010	80
Cuadro 31. Estimación del Carbono en biomasa aerea almacenado en las 13 fincas selec-	cionadas
para el presente estudio en le región de Chorotega.	88
Cuadro 32. Estimación del total de Carbono fijado utilizado como linea base en las 1	3 fincas
seleccionadas para el presente estudio en le región de Chorotega.	90
Cuadro 33. Estimación del total de Carbono fijado utilizado bajo un escenario de solo car	nbiar las
pasturas naturales a mejoradas en las 13 fincas seleccionadas para el presente estudio en la	le región
de Chorotega.	92
Cuadro 34. Estimación del total de Carbono fijado utilizado bajo un escenario de incrementa	nto de la
cobertura arborea en las áreas de pasturas en las 13 fincas seleccionadas para el presente es	studio en
le región de Chorotega	92
Cuadro 35. Estimación del total de Carbono fijado utilizado bajo un escenario del incremen	ito en un
60% del total de pasturas degradadas en las 13 fincas seleccionadas para el presente estud	dio en le
región de Chorotega.	93
Cuadro 36. Caracterización de los sistemas de producción	101
Cuadro 37. Categorías en la composición del hato en las 13 fincas evaluadas	101
Cuadro 38. Promedios productivos observados en los distintos sistemas productivos	102
Cuadro 39. Supuestos utilizados respecto al peso de las diferentes categorías del hato	103
Cuadro 40. Composición del hato	111
Cuadro 41. Composición del hato	112
Cuadro 42. Composición del hato	113
Cuadro 43. Composición del hato	114
Cuadro 44. Composición del hato	116
Cuadro 45. Composición del hato	117
Cuadro 46. Composición del hato	118
Cuadro 47. Composición del hato	119
Cuadro 48. Composición del hato	120
Cuadro 49. Composición del hato	
Cuadro 50. Composición del hato	122
Cuadro 51. Composición del hato	123
Cuadro 52. Composición del hato	124

RESUMEN EJECUTIVO

DETERMINACIÓN DEL BALANCE DE GASES EFECTO INVERNADERO EN FINCAS GANADERAS DE LA REGIÓN CHOROTEGA, COMO ELEMENTO DE REFERENCIA PARA MEJORAR LA COMPETITIVIDAD SP No: 14-2009

EJECUTADO POR EL PROGRAMA GANADERIA Y MANEJO DEL AMBIENTE-GAMMA- DEL CATIE CON EL APOYO

DEL PROGRAMA DE FOMEMNTO DE LA PRODUCCION AGROPECAURIA SOSTENIBLE -PFAS- DEL MINISTERIO DE AGRICULTURA DE COSTA RICA

La Emisión de gases de efecto invernadero y su efecto en el cambio climático

La causa de este cambio climático global es el efecto invernadero, el cual ocurre como consecuencia de la emisión de los gases de efecto invernadero (GEI). Los ganaderos están involucrados en esta discusión porque la ganadería es la responsable de una parte importante de la emisión GEI (Smith, 2008).

Desde un punto de vista global, las actividades relacionadas con la ganadería contribuyen con un 18 % (en equivalentes de CO2) de las emisiones antropogénicas de los GEI. Esto equivale incluso a un porcentaje más alto que las emisiones del sector del transporte (FAO citado por Sitio Agro Ganado. 2008). Para revertir esta tendencia, los Sistemas Silvopastoriles (SSP) son una alternativa para el mejoramiento de la producción ganadera y el medio ambiente pues posee gran cantidad de beneficios ambientales; éstos sistemas bien manejados, permiten mejorar tanto la calidad ambiental como la productividad pecuaria (FAO citado por Arias, 2007).

Las prácticas agropecuarias tradicionales juegan un importante papel ya sea adicionando gases efecto invernadero, resultado de las tecnologías de producción o, reduciéndolos mediante su captura en la biomasa. Durante el pastoreo una porción de pasto ofrecido no es consumido, parte de estos residuos son incorporados como materia orgánica en el suelo e incrementa la cantidad de carbono en el mismo. El suelo juega un rol importante en la acumulación del carbono, y es el resultado de la descomposición de la materia orgánica proveniente de la hojarasca, las raíces de los pastos, los árboles, y el aporte de las excretas de los animales.

La mayor parte de trabajos para determinar carbono en SSP, provienen de modelos ideados para bosques, lo que representa una limitante por las adaptaciones y modificaciones que deber realizarse de los mismos. Además, hasta el momento las investigaciones no han considerado el secuestro del carbono por parte del componente animal, que representa un eslabón muy importante dentro de SSP.

La relación de la ganadería y los Gases de Efecto Invernadero en Costa Rica

La expansión e intensificación de la ganadería ha contribuido a problemas globales en el ambiente, sin embargo, también son parte de la solución (Rowlinson 2008). Si bien es reconocido que la ganadería trae consigo problemas ambientales, también se reconoce que el sistema sostenible alberga un gran potencial de brindar servicios ecosistémicos y sustenta una importante porción de la economía de los países en vías de desarrollo.

La actividad ganadera presenta dos aspectos de importancia global; la deforestación y las emisiones de Gases de Efecto Invernadero (GEI) provenientes del sistema ganadero. Según el inventario nacional de Costa Rica realizado para el año 1999 el 73% de las emisiones de CO₂ correspondieron a cambios de uso de suelo y 83% de las emisiones de CH₄ correspondieron a fermentación entérica, cultivo de arroz y manejo de residuos. Respecto al N₂O se aprecia una participación similar, el 70% de las emisiones proviene del sector agrícola, no obstante no se tienen datos específicos respecto a la aplicación de fertilizantes nitrogenados, pero se tiene conocimiento de que es una actividad importante dentro de la curva de emisiones.

En términos generales las causas de las emisiones en la ganadería se pueden resumir de la siguiente manera (Steineld 2006):

- ✓ Cambios de usos de suelo para la producción de granos o pasturas.
- ✓ Manufactura y aplicaciones de fertilizantes nitrogenados.
- ✓ Establecimiento de la actividad ganadera en zonas degradadas o no aptas para la actividad induciendo a la desertificación.
- ✓ Utilización de energías fósiles para transporte, procesamiento y refrigeración de los productos animales.
- ✓ Proceso de fermentación entérica y manejo de residuos sólidos y líquidos.

Existe mucha discusión sobre los niveles de emisión y fijación de carbono en los sistemas agropecuarios, en muchos casos injustamente se promueve a la ganadería como una actividad emisora de gases de efecto invernadero, sin la mínima consideración que muchas fincas ganaderas fijan grandes cantidades de carbono, sea a través de la conservación de los bosques, reforestación, establecimiento de pasturas mejoradas, las cercas vivas, la producción de biogás a partir de excretas y otras técnicas más, que reducen y en muchos casos neutralizan los GEI emitidos. La necesidad de entregar información e indicadores metodológicamente consistentes permitirá a los tomadores de decisión orientar los recursos de reducción y compensación de emisiones de GEI en los componentes o procesos de mayor impacto. La cuantificación de emisiones fue uno de los temas tratados en el "Plan de Acción Bali" publicado a partir de la conferencia de las partes (COP) realizada en Diciembre del 2007 en Bali, Indonesia. En este documento se establece que todas las emisiones deben ser: medibles, reportables y verificables. A partir de la conferencia de las partes (COP) de Naciones Unidas sobre el Cambio Climático realizada en Diciembre 2009

en Copenhague. La tendencia global apunta hacia la transformación de los modelos productivos y a la disminución de la deforestación y la degradación de las tierras, así como a la búsqueda de la competitividad y la eficiencia ambiental en las actividades productivas del sector rural. Este nuevo escenario internacional conlleva a realizar un análisis no solo respecto a las emisiones dentro de la finca, sino evaluar la intensidad de emisiones ganaderas a través de la óptica de la cadena de producción. En este sentido conocer los encadenamientos productivos de los sistemas ganaderos, la configuración del mercado de la leche y carne tanto a nivel regional como nacional, las oportunidades a partir de la generación de servicios eco sistémicos y las vulnerabilidades climáticas y de mercado que se ven expuestos los productores son variables de vital importancia para tener una planificación estratégica del sector en el marco de las nuevas políticas globales que se vislumbran para los años venideros.

Surge entonces la necesidad de realizar un Balance de Gases de Efecto Invernadero en la Región Chorotega, el cual permitirá comparar las cantidades emitidas y fijadas de equivalentes de CO₂, y analizar los factores que intervienen en el proceso, para tratar de prever su evolución y de esta forma poder conocer si las fincas ganaderas en la región son emisoras o almacenadoras netos y, cual (es) componente (s) está (n) influyendo positiva o negativamente en dicho balance. En el caso de las fincas que funcionan como depósitos de CO₂ atmosférico, tendrían el potencial para: i) comercializar estos depósitos en el mercado nacional o internacional y/o posicionarse como oferentes de servicios ambientales, derivados de la implementación de SSP y buenas prácticas ganaderas en las fincas

El presente estudio de balance de gases de efecto invernadero en fincas de ganadería bovina en Guanacaste, busca determinar el potencial de generación de Servicios Ambientales y la valoración de venta de carbono a nivel global, de tal forma que se mejore la productividad de los sistemas ganaderos, se cambie la imagen de la actividad hacia una amigable con el ambiente y permita la diversificación de las fincas ganaderas de la Región.

Para el desarrollo del presente estudio se plantearon los siguientes objetivos:

OBJETIVOS

Para el desarrollo del presente estudio se han planteado los siguientes objetivos:

GENERAL

Determinar el balance de gases de efecto invernadero en fincas de ganadería bovina de la región Chorotega (carne y doble propósito) y su potencial para la generación de servicios ambientales como atributos para mejorar la competitividad en las fincas.

ESPECÍFICOS

✓ Medir el balance de gases de efecto invernadero en sistemas de producción de ganadería bovina en fincas representativas de la región Chorotega

- ✓ Determinar la generación de servicios ambientales actuales y potenciales como biodiversidad, belleza escénica, fijación de carbono, producción de agua y disminución de la erosión, entre otros de las fincas ganaderas de la región Chorotega.
- ✓ Extrapolar los datos de fincas evaluadas para determinar el potencial de venta servicios de carbono en fincas ganaderas en la región de Chorotega.
- ✓ Hacer un análisis económico para estimar el costo de inversión para la generación de beneficios de venta de servicios de carbono y costo de oportunidad por tonelada carbono (equivalente) capturado.

Este documento es el informe final del estudio en mención, con el propósito de cumplir con los objetivos propuestos, y hacer una presentación detallada de los resultados, se dividió el estudio por capítulos de acuerdo con los objetivos planteados, a continuación se presentar un resumen de cada uno, el cual incluye una breve descripción de la metodología aplicada, así como los principales resultados encontrados y las conclusiones mas relevantes.

CAPITULO 1 : IDENTIFICACIÓN Y CARACTERIZACIÓN DE FINCAS REPRESENTATIVAS DE LA REGIÓN CHOROTEGA

La región de Guanacaste una diversidad agro- ecológica importante, lo que define los sistemas de producción de la región, la principal actividad generadora de ingresos es la ganadería, y más de un 38% de su territorio está destinado a esta actividad. Los sistemas de mayor participación corresponde a la producción de carne (mas del 70%), seguida del doble propósito y en, menor proporción por los sistemas de producción de leche.

Para efectos del estudio y con el apoyo de expertos de la oficina regional del Guanacaste del Ministerio de Agricultura MAG de Costa Rica, se seleccionaron 16 fincas representativas en la región, y pertenecientes a los tres sistemas de producción predominantes (para tener mayor confiabilidad en los datos), lo anterior con el objetivo de obtener información biofísica, ambiental y socioeconómica que permitió caracterizarlas. - a pesar que el estudio definió una muestra de solo 6 fincas de los sistemas de producción de carne y doble propósito-. Cabe mencionar que al final solo fue posible desarrollar el estudio con 13 fincas, en tres fincas no se pudo concretar el estudio por razones como: falta de información, falta de colaboración por parte del productor y la presencia de un incendio en otra.

La información para caracterización de fincas se tomo por medio de encuestas, se realizaron tres en total: i) para obtener información relacionada con la actividad ganadera como tal, ii) información útil para el cálculo de emisiones de gases efecto invernadero y iii) información relacionada con la provisión de servicios ambientales en la Región Chorotega. Adicionalmente se tomaron coordenadas geográficas de cada uno de los usos de la tierra de las fincas seleccionadas y mediante la ayuda de imágenes satelitales se construyeron los croquis de cada una de las fincas, los cuales incluyeron información de los diferentes usos

de los suelos, área, delimitación geográfica, linderos etc. Se aplico la metodología de verificación de la información directamente con los productores en el campo. En las fincas que no se logró obtener las fotos satelitales se realizó un levantamiento de punto por medio de GPS para luego generar mapas digitales con la debida clasificación de los usos de suelo, se construyeron los mapas georeferenciados de cada una de las fincas que después de la entrega de este informe serán entregados a los productores.

También se tomaron muestras de diferentes usos del suelo en varias fincas para determinar la captura de carbono a nivel del suelo y en la biomasa y con la aplicación de diferentes formulas de la ecuación TIR 1, 2 y 3 del IPCC, se calculo la emisión de GEI en las 13 fincas. Con la información de la cuantificación de la captura de carbono y emisión de gases efecto invernadero se determinó el balance de balances de gases y el potencial de cada una para la generación de servicios ambientales, esta información fue útil para extrapolar los datos a la Región Chorotega y poder dar una recomendación sobre la forma de establecer fincas que se acerquen a la carbono neutralidad, así como también se pudo identificar las principales en la los lugares con mayor densidad de ganadería y las zonas con mayor oportunidades para la generación de servicios ambientales en la Región.

Con la información recolectada, se construyeron 3 bases de datos, la cual hace parte de la línea base para futuros estudios en la Región

CAPITULO 2 : ALMACENAMIENTO DE CARBONO EN EL SUELO Y BIOMASA ARBOREA EN USOS DE LA TIERRA DE PAISAJES GANDEROS D ELA REGION CHOROTEGA

Costa Rica ha venido fortaleciendo sus compromisos internacionales a nivel ambiental, como ha sido la reducción de gases de efecto invernadero, a través de la Convención de Cambio Climático, lo que ha permitido generar una conciencia ambiental y perspectivas para afrontar el cambio climático, el país ha tomado el reto de llegar a ser país neutral de emisiones en el año 2021, este compromiso solo lo han tomado los países desarrollados. A nivel del sector ganadero y con el propósito de contribuir con el cumplimiento de esta meta nacional, es indispensable conocer la potencialidad de almacenamiento de carbono y remoción de dioxido de carbono -CO2- en los diferentes usos de la tierra presentes en fincas ganaderas. En este estudio se estimó el almacenamiento de carbono del suelo y de la biomasa arbórea arriba del suelo en seis usos de la tierra en fincas representativas de la Región de Chorotega. Los usos de la tierra seleccionados fueron: 1. bosques secundarios, 2. bancos forrajeros de gramíneas, 3. bancos forrajeros de leñosas, 4. plantaciones forestales, y 6 pastura degradada. Para estimar el carbono 5. pastura mejorada con árboles almacenado, se tomaron muestras de suelo para estimar el carbono total y la densidad aparente mediante el análisis de laboratorio. El carbono en la biomasa se estimó estableciendo parcelas temporales donde se midió el diámetro a la altura del pecho de todos los árboles y mediante ecuaciones alométricas se calculó la biomasa. Los bosques secundarios fue el uso de la tierra en el cual se encontró el mayor stock de carbono 178,7 tn C, seguido de las plantaciones forestales 142,4 tn C, pasturas mejoradas de alta densidad de árboles 107,1 tn C y los valores más bajos se reportaron en las pasturas degradadas 60,2 tn C. El mayor aporte al stock de carbono es realizado por el suelo, mientras que en las plantaciones forestales y bosques el biomasa arbórea aportan entre el 40 -50% del total de carbono almacenado. Esto evidencia que el manejo de pasturas bajo sistemas silvopastoriles presenta una potencialidad para el flujo de carbono y con buenas prácticas de manejo contribuyen a la remoción de CO2 atmosférico, siendo una estrategia complementaria para el almacenamiento de carbono y protección de los remanentes de bosque y manejo sostenible de las plantaciones forestales que son los usos de la tierra con los valores más altos de carbono almacenado en la región.

CAPITULO 3 : EMISIONES DE GASES DE EFECTO INVERNADERO EN SISTEMAS GANADEROS EN LA PROVINCIA DE GUANACASTE

Los sistemas evaluados fueron: carne, lechería y doble propósito. Las emisiones totales de las fincas fueron 1649 tCO2e. Las emisiones provenientes de los procesos fisiológicos de los animales representaron 87% de las emisiones totales. Sin embargo, la modelación en aumentos paulatinos en la digestibilidad y proteína cruda demostró que la mayor reducción marginal de emisiones de GEI por fermentación entérica y manejo de residuos sólidos y líquidos se obtiene entre el intervalo 47%DIVMS < X < 52%DIVMS y aumento de %PC de 7% a un 9%. Por sobre el intervalo anteriormente señalado las reducciones marginales decrecen respecto al aumento porcentual de la digestibilidad de materia seca. Para las 13 fincas evaluadas se calcularon las emisiones identificadas en las 3 fases.

a) Las emisiones que componen la FASE 1:

- ✓ Emisiones de CO₂ procedentes de la utilización de combustibles fósiles para el transporte de: fertilizantes, concentrados, herbicidas y diesel para el funcionamiento de maquinarias.
- ✓ Emisiones de CO₂ procedentes de la utilización de combustibles fósiles para la generación de energía eléctrica.

Por medio de la información levantada a través del instrumento (entrevista- Anexo 2) se estableció la frecuencia mensual de los viajes y el gasto mensual en combustible por transporte. Cabe señalar que las respuestas de los productores es una aproximación ya que no llevan registro detallado de sus gastos en combustible

b) Las emisiones que componen la FASE 2:

- ✓ Emisiones de CO₂ procedentes de la utilización de combustibles fósiles para el funcionamiento de las maquinarias dentro de la finca.
- ✓ Emisiones de CO₂ procedentes de la utilización de combustibles fósiles para el funcionamiento de bombas de riego.
- ✓ Emisiones de N₂O procedentes de la aplicación de fertilizantes sintéticos en pasturas cuantificadas a partir de la metodología 1 IPCC.
- ✓ Emisiones de CH₄ procedentes de la fermentación entérica cuantificadas a partir de la metodología 2 y 3 IPCC.
- ✓ Emisiones de CH₄ procedentes del manejo de residuos sólidos y líquidos cuantificadas a partir de la metodología 2 y 3 IPCC.

✓ Emisiones de N₂O procedentes del manejo de residuos sólidos y líquidos cuantificadas a partir de la metodología 2 y 3 IPCC.

Las emisiones de CO_2 procedente de la utilización de combustibles fósiles para el funcionamiento de maquinaria o bomba de riego se utilizó la ecuación $N^\circ 1$ anteriormente señalada. Es importante mencionar que no todas las fincas realizan estas prácticas, en esos casos no fueron consideradas.

c) <u>Las emisiones que componen la FASE 3 considerados para el estudio solo representan las</u> emisiones del transporte de los productos finales.

✓ Emisiones de CO₂ procedentes de la utilización de combustibles fósiles para el transporte de los productos finales.

Sin embargo, la gran mayoría de los productores entrega el producto en la puerta de la finca lo que desliga responsabilidades en términos de emisiones a los productores y sería necesario realizar un análisis más extenso para conocer las implicancias de los procesos involucrados hasta el detallista.

Las emisiones totales de GEI de las 13 fincas evaluadas se estimaron en 1649 tCO₂e. Si consideramos los resultados obtenidos por Tier 1 IPCC estimadas en 1945 tCO₂e se estaría sobre-estimando las emisiones en 297 t CO₂e. Si bien la diferencia no parece ser significativa, esto depende de la escala en que se realicen las evaluaciones, si en solo 13 hay diferencias de mas de 200 tCO₂e a nivel regional las diferencias pueden distorsionar los resultados para eventuales aplicaciones de políticas o para el inventario nacional de GEI. Por lo tanto se recomienda utilizar al menos el Tier 2 y en lo posible Tier 3 para la cuantificación de emisiones GEI para Costa Rica. Las emisiones provienen principalmente de los proceso fisiológicos de los animales (fermentación entérica y residuos sólidos y líquidos) representaron el 87% de las emisiones totales, sin embargo las emisiones fuera de la finca por procesos y actividades se estimaron en 92,3 tCO₂e las cuales son evitables no así los procesos fisiológicos de los animales.

Para el cálculo de balance de Gases se utilizaron las ecuaciones del IPCC, modelación CO2FIX e información primaria por entrevistas presenciales. Además se utilizaron Sistemas de Información Geográfica (SIG) para digitalizar usos de suelo previo levantamiento de puntos a partir de GPS. La construcción de un balance de GEI se realiza a través de dos procesos: 1) la cuantificación de los GEI del sistema y 2) cuantificación de las tasas de remoción de los usos de suelo seleccionados para el balance. Para la cuantificación de los GEI se utilizaron los resultados obtenidos en el cálculo de las emisiones y para las tasas de remoción se utilizaron los resultados de la captura de carbono en diferentes usos de los suelos. Para los usos de suelo los cuales no fueron monitoreados en campo se utilizaron los resultados obtenidos a través de la modelación del software CO2FIX e información secundaria proveniente del Proyecto de Enfoques Silvopastoriles Integrados para el Manejo de Ecosistemas (CATIE/GEF).

Los usos de suelo se agruparon en dos categorías: 1) vegetación en sucesión (Bosques Secundarios, Bosques Riparios y Tacotales) y 2) Usos de suelos productivos con potencial de remoción de gases de efecto invernadero (principalmente pasturas). Los reservorios de

carbono incluidos en el análisis fueron: reservorios arriba del suelo (biomasa leñosa arbórea y no arbórea) y bajo el suelo. No se consideraron: madera muerta, hojarasca ni otros reservorios existentes en el sistema. Los usos de suelo de mayor aporte para el balance de GEI fueron los bosques; ripario y secundario. Las fincas doble propósito presentan un balance de GEI positivo o superavitario en promedio de 97 tCO2e. La finca de engorde y lechería presenta un balance negativo de -85,3 tCO2e y -111,7. Todas las fincas presentan un balance negativo de GEI si se excluyen las áreas de bosque dentro del balance.

CAPITULO 4 : VALORACIÓN DE LA HUELLA DE CARBONO A PARTIR DEL ENFOQUE DE ANÁLISIS DE CICLO DE VIDA EN FINCAS GANADERAS EN LA PROVINCIA DE GUANACASTE

Los sistemas ganaderos por su naturaleza están constituidos por encadenamientos de procesos. Las experiencias sobre la aplicación del Análisis del Ciclo de Vida (ACV) en la agricultura demuestran que se requiere un enfoque multidisciplinario. No solo se incorporan las actividades dentro de la finca, sino también actividades que se producen fuera de la unidad finca, las cuales tienen otras dinámicas y otros agentes de presión. Desde la fabricación de los insumos, su transporte, aplicación en actividades dentro de la finca, comercialización y luego consumidores. En todos los procesos señalados se originan Gases de Efecto Invernadero (GEI) y por ende presión a los ecosistemas de remoción y secuestro de GEI. El objetivo de aplicar el ACV es obtener una imagen clara de las actividades de mayor intensidad de emisiones de GEI, y brindar información precisa a los tomadores de decisión, de cuáles pueden ser las intervenciones para reducir las emisiones dentro de la parte técnica, económica o productiva y de mercado.

Para el cálculo se tomo una finca doble propósito tipo de la zona y se determino el análisis para productos finales leche y carne. Se utilizaron dos indicadores funcionales: ∑ CO2e(t) / FPCM y ∑ CO2e(t) / Kg GPV. El primer indicador para obtener la intensidad de emisiones para la producción de leche y el segundo la intensidad de emisiones para la producción 1 kg de carne. Se utilizaron las ecuaciones del IPCC y el software SIMPRO 7.2 para el análisis de ACV. Los resultados obtenidos indican que para producir 1 litro de leche se emite 1,28 Kg CO2e y para carne 1 Kg de carne 13 Kg CO2e. La frontera productiva de la carbono neutralidad según las tasas de remoción de 5,4 t CO2e evaluadas en la zona demuestran un máximo de 2109 Lit. leche y 207 Kg carne.

CAPITULO 5: POTENCIAL DE PROVISIÓN DE SERVICIOS ECOSISTÉMICOS EN PAISAJES GANADEROS DE LA REGIÓN CHOROTEGA

Se exploró el potencial de los paisajes ganaderos en la región Chorotega para proveer servicios ecosistémicos como biodiversidad, agua, carbono y belleza escénica bajo sistemas ganaderos sostenibles y la implementación de buenas prácticas de manejo. Dicho análisis involucró el uso de sistemas de información de geográfica, entrevistas con técnicos y productores, visitas de campo y revisión de literatura. El uso de sistemas de información geográfica (SIG), incluyó el uso de diferentes coberturas ligadas a base de datos, así como el uso de valores ponderados para cada uno de las mismas.

El desarrollo del presente análisis ha contemplado 2 fases: i) una de campo, en la cual se hicieron recorridos de los cantones de la región que involucró reuniones con técnicos y productores; y ii) una fase de análisis espacial con base en sistemas de información geográfica en la cual se asignó valores de prioridad en cada uno de servicios ecosistémicos evaluados, que bajo formas de mapas virtuales del atlas de Costa Rica fueron combinados y analizados con la finalidad de identificar áreas prioritarias en territorios ganaderos con un alto potencial de provisión de Servicios ecosistémicos como biodiversidad, recurso hídrico, fijación de carbono y belleza escénica.

Si bien la ganadería es una actividad generalizada en toda la región, el número y densidad de fincas, así como su orientación productiva varían considerablemente entre sus cantones, existiendo puntos de alta, media y baja densidad poblacional ganadera en todo su territorio. Es importante resaltar que no siempre la densidad de fincas ganaderas en los cantones está correlacionada con la densidad de animales en los mismos. La densidad mas altas de fincas ganaderas según este estudio se encuentra en cantones de Tilaran, Hoja Ancha, Bagaces y Santa Cruz, mientras que entre los cantones con menor densidad de fincas están Carrillo y Nicoya entre otros.

En los últimos años, la generación de servicios ambientales han sido afectados por el aprovechamiento irracional de los ecosistemas y más recientemente, por el cambio climático, la región de Chorotega no ha escapado a esta realidad, pues el cambio de uso de la tierra, la masificación de malas prácticas productivas y la variabilidad climática vienen mermado y degradando el potencial de provisión de los servicios. en el presente estudio se analizó el potencial de los servicios ecosistémicos de Biodiversidad, Agua, Fijación de Carbono y Belleza Escénica en territorios ganaderos, para lo cual se identificaron la zonas de alto potencial para la provisión de servicios ecositemicos y altamente vulnerables por la actividad ganadera y la lógica indica que debería darse una transición en estos zonas de ganadería convencional degradativa a una ganadería amigable con el ambiente.

Para lo cual, los diferentes atributos de Biodiversidad. Agua, Fijación de Carbono y Belleza escénica fueron confrontados con los atributos de ganadería de la Región Chorotega, encontrándose por ejemplo que la Región Chorotega presneta en su territorio las siguientes potencialidades: 3 Áreas de Conservación (Área de Conservación de Guanacaste, el Área de Conservación Arenal Tilarán y el Área de Conservación Tempisque), el corredor Biológico Chorotega (conformado por 7 corredores biológicos locales), 7 parques nacionales (Parque Nacional Volcán Arenal, Parque Nacional Barra Honda, Parque Nacional Guanacaste, Parque Nacional Marino Las Baulas, Parque Nacional Palo Verde, Parque Nacional Rincón de la Vieja, Parque Nacional Volcán Tenorio) y un refugio de vida Silvestre (Cabo Blanco).

En general se determino la ganadería convencional en los Corredores Biológicos tiene un impacto considerable al generar fragmentación y disminuir la conectividad en los mismos; en las Áreas protegidas, el impacto se centra en la zonas de amortiguamiento donde se evidencia un avance de esta actividad; en los Humedales por son zonas frágiles y de vital importancia para la conservación de la biodiversidad y en muchos casos se encuentran dentro de las fincas ganaderas, se determino que la prioridad para conservación de

biodiversidad en el Región chorotega, se centra en los cantones de Tilaran, Nicoya, Santa cruz y Nandayure.

Respecto al recurso hídrico, se encontró que la Región Chorotega, aún contando con 13 grandes cuencas y alrededor de 650 microcuencas, es una de las regiones con menor riqueza hídrica del país, y de hecho es la región más seca de Costa Rica. En la región, la principal fuente de agua son los acuíferos, los cuales debido a la contaminación y sobreexplotación (principalmente por extracción de caudales considerables de agua mediante pozos) han disminuido considerablemente sus caudales. A esto se aúna el punto que la región alberga importantes proyectos hidroeléctricos y de Riego. Es por ello que garantizar la provisión del servicio ecosistémico hídrico, ya sea en regulación, calidad y cantidad, es de vital importancia.

Los recursos hídricos en la región son vulnerables debido a que:

- A la presencia de malas prácticas en fincas ganaderas, como el ingreso directo de los animales a los cuerpos de agua como nacientes y ríos;
- Los remanentes de bosques riparios están en un estado crítico y en algunos casos su ancho de vegetación no supera los 2 metros a cada margen o en el peor de los casos no existen. Cuando existe márgenes, estos no cuentan con protección.
- Hay un preocupante avance de la degradación de los ecosistemas acuáticos.
- El cambio de uso de la tierra está ocasionando una deforestación severa en zonas de recarga hídrica.
- Son comunes las malas prácticas de uso y consumo de agua.

El mayor impacto sobre el recurso hídrico de de la ganadería respecto, se presneta Humedales, debido a que su ubicación abarca zonas de producción ganadera y Acuíferos o reservas subterráneas de agua de vital importancia para el abastecimiento y conservación del recurso hídrico, ello se determino por que muchos Pozos y acueductos son la principal fuente de agua en muchas fincas ganaderas tanto para consumo humano como animal, y zonas definidas como de importancia hídrica, ya que son lugares identificados, delimitados y priorizados para garantizar la cantidad, calidad y continuidad del recurso hídrico en la región y en gran parte de ellas se encuentras ubicadas zonas ganaderas. Según el análisis de la información se pudo determinar que las catones de Tilaran, Santa Cruz, Nicoya y Hoja Ancha, deben ser catalogados con de alta prioridad para las acciones encaminadas a la protección conservación del recurso hídrico, para garantizar la cantidad, calidad y continuidad del recursos en la Región.

La región de Chorotega cuenta con un alto potencial de fijación de carbono mediante los sumideros de carbono, (deposito natural o artificial de carbono, que absorbe el carbono de la atmosfera y reduce el dióxido de carbono del aire) al contar con alrededor del 24% (5393 ha) del total de Tierras Kyoto (tierras que se encuentran enmarcadas dentro de las definiciones de forestación y reforestación del Mecanismo de Desarrollo Limpio MDL) identificadas en el país.

Como resultado de sobreposición de estos mapas y atributos dio como resultado un mapa de zonas con alto potencial para Fijación de Carbono para Tilaran y menor grado a Hojan Ancha, Nicoya y Bagaces.

Según el Ministerio de Planificación Nacional y Política Económica (MIDEPLAN), la belleza escénica es un concepto que conlleva aspectos subjetivos, pero ligados a la conservación y el disfrute de un patrimonio heredado, porque está constituido por una amplia gama de recursos naturales, por ejemplo los ríos, montañas, volcanes, lagos, bosques y la biodiversidad; los cuales tienen un significativo valor económico que pocas veces es reconocido por la población. La región Chorotega cuenta con gran potencial de brindar este tipo de servicio ecosistémico en varias áreas de su territorios ganaderos, pues existen zonas identificadas que permiten la posibilidad de disfrute, tanto para la actividad turística y científica, basados en las formaciones y expresiones de su recursos naturales. En lo que concierne a Belleza Escénica los cantones con fincas ganaderas que figuran con un alto potencial de desarrollar la actividad turística- rural, analizando variables como fácil acceso a lugares turísticos, parques nacionales, presencia de montañas, volcanes, playas, hoteles, etc. Se encontró que los cantones que cuenta con estas características, y por contar con la infraestructura existente como carreteras, hoteles y servicios varios son los que tienen mayor potencial para este servicio ecosistemico. Entre los principales cantones figuran: Liberia, Carrillo, Santa Cruz, Nicoya, Cañas, Hojancha y Nandayure.

PRINCIPALES CONCLUSIONES

- 1. Es muy importante la caracterizacion de las fincas ganaderas, instrumentos como las encuestas, entrevistas, vistas domiciliarias ayudan a recabar información biofísica y socioeconómica que junto con los mapas de uso del suelo que se levantaron en cada finca, le sirven al productor para planificar sus actividades futuras y tomar decisiones sobre la forma de implementar buenas prácticas ganaderas y sistemas Silvopastoriles para tener una mayor productividad y rentabilidad en la finca, así como para saber qué cambios hacer para mejorar su indicadores económicos y reducir la emisión de gases efecto invernadero y aumentar la remoción de carbono, con la siembra o cuidado de arboles ya existentes en el campo. El uso de Sistemas de Información Geográfica resulta de gran utilidad para confrontar la información tomada en campo como los levantamiento de uso de la tierra y la información de las imágenes satelitales, pero mucho más eficiente es la metodología que trabajar directamente con el productor verificando los mapas de su finca y para esta labor se puede apoyar en el uso de planos catastrados, fotos etc.
- 2. Los bosques secundarios son los usos de la tierra con la mayor diversidad de especies en la región y son áreas importantes para la conservación de especies vía de extinción (Caoba). Las especies arbóreas que retienen los productores en las pasturas son de principalmente maderables y en menor proporción dejan especies para otro uso potencial.

El análisis de carbono total de suelo aprecio que las pasturas degradadas y los bancos forrajeros de leñosas fueron el uso de la tierra que presento los valores más bajo. Los bosques y plantaciones fueron los usos de la tierra que más aportaron para el almacenamiento de carbono en el suelo y en la biomasa. Los resultados muestran que en la región de Chorotega, en las fincas ganaderas presenta un potencial para la captura y fijación

de carbono, principalmente por la conservación de los remanentes de bosque y el manejo de árboles en las áreas de producción de las fincas, para el cual puede ser importante en la planificación de la finca, con el fin diversificar la producción agropecuaria y la generación de servicios ecosistemicos.

3. Las emisiones de GEI provienen principalmente de los proceso fisiológicos de los animales (fermentación entérica y residuos sólidos y líquidos), estas representaron el 87% de las emisiones totales, sin embargo las emisiones fuera de la finca por procesos y actividades se estimaron en 92,3 tCO₂e las cuales son evitables no así los procesos fisiológicos de los animales.

Las emisiones totales de GEI de las 13 fincas evaluadas se estimaron en 1649 tCO₂e. Si consideramos los resultados obtenidos por Tier 1 IPCC estimadas en 1945 tCO₂e se estaría sobre-estimando las emisiones en 297 t CO₂e. Si bien la diferencia no parece ser significativa, esto depende de la escala en que se realicen las evaluaciones, si en solo 13 hay diferencias de mas de 200 tCO₂e a nivel regional las diferencias pueden distorsionar los resultados para eventuales aplicaciones de políticas o para el inventario nacional de GEI. Por lo tanto como primera conclusión se recomienda utilizar al menos el Tier 2 y en lo posible Tier 3 para la cuantificación de emisiones GEI para Costa Rica.

Las emisiones aproximadas de la región de Chorotega fueron estimadas en 631.513 tCO2e. Si se consideran solamente el bosque secundario de la zona las remociones anuales equivalen a 558.799,6 tCO2e. Sin embargo, a esto se le debe sumar todo el aporte de los usos de suelo de pastura lo cual hace prever un balance positivo. No obstante, realizando el balance solo con el bosque secundario el balance es negativo en 72.714 tCO2e.

Algunas conclusiones particulares:

- Los sistemas productivos tienen comportamientos distintos en términos de la dinámica de GEI. Esto quedó evidenciado al comparar los tres sistemas dentro del análisis, sistemas doble propósito, lechería y engorde. Los sistemas doble propósito por la diversificación productiva y en la composición del hato tienen menos fricción para obtener un balance positivo, no así los sistemas lecheros y engorde. Los sistemas lecheros son intensivos tanto en la utilización de su capital productivo como también en la demanda por insumos externos. Los sistemas de engorde son de baja carga animal y depende de la ganancia de peso de los animales. Esto hace énfasis en que la mejora en los indicadores productivos de la finca afectan positivamente al balance.
- El uso de suelo que aporta de mayor manera a los balances positivos en la fincas es el bosque. Esto tiene grandes implicaciones ya que queda demostrado que bajo sistemas con pasturas de baja densidad de árboles el bosque tiene un rol esencial en el balance de GEI. Todas las fincas analizadas tendrían un balance negativo si el bosque no se toma en consideración como uso de suelo elegible para realizar este análisis.

- El balance de GEI puede cambiar la opinión mediática respecto a la ganadería, siendo esta un aporte para la mitigación de GEI con un manejo apropiado e implementando sistemas silvopastoriles. Además, respecto a las discusiones internacionales al papel que cumplen los bosques como estrategia para mitigación de GEI (REDD) se debe considerar replantear la visión de las instituciones en consideración de las áreas de bosques que existen dentro de las fincas ganaderas y la implementación de estrategias para la reducción de emisiones GEI y generar instancias de discusión de cuáles pueden ser las implicancias de brindar este servicios ecosistémico mas allá de las fronteras costarricenses ya que esto puede afectar el logro de la carbono neutralidad nacional, ya que al ser oferentes de este servicio para países extranjeros no podrían ser considerados para la compensaciones de las emisiones nacionales por el problema de la doble contabilidad.
- 4. Para el análisis de la huella de carbono para la leche y la carne en sistemas ganaderos es necesario utilizar la metodología del Análisis del Ciclo de Vida del producto. Como se ha observado a lo largo de este estudio la huella de carbono está compuesta por cientos de procesos los que inciden en el resultado final Kg CO₂e/ unidad de producto. Por eso es importante tomar en cuenta las siguientes consideraciones a la hora de hacer los análisis.
 - El proceso que genera la mayor cantidad de emisiones de GEI es la fermentación entérica, seguido por los residuos sólidos y las fuentes derivadas del sistema de transporte, aplicación de insumos químicos, procesamiento etc. Sin embargo las emisiones por fermentación entérica es una externalidad natural de la actividad ganadera, por lo tanto no son evitables por completo, en cambio las emisiones por residuos sólidos y líquidos pueden ser vistas dentro del sistema como un subproducto. La utilización de biodigestores son una buena alternativa por que aportan un doble beneficio, por un lado ayudan a reducir las emisiones por este proceso y por otro disminuir la dependencia energética del sistema.
 - La matriz energética del sistema ganadero evaluado es altamente dependiente de energías fósiles. Sin tomar en cuenta las emisiones por procesos de los animales las emisiones provenientes del consumo de combustibles fósiles son gran parte de las emisiones totales de insumos (7,3 t CO₂e, en todos los alcances (1,2 3). Esto hace necesario replantear la posibilidad de generar otros tipos de fuentes energéticas, que permitan disminuir las emisiones por este componente. Por ejemplo evaluar la posibilidad de incorporar cultivos bioenergéticos dentro de la finca. Las fincas ganaderas pueden convertirse en oferentes de esta materia prima utilizando estos cultivos en las cercas vivas o en lugares donde los animales no afecten el cultivo negativamente.
 - El capital natural tiene un rol esencial en la carbono neutralidad de la leche y carne. Los ingresos brutos por Ha en el contexto de la carbono neutralidad son aproximadamente 1144 US, con precios de referencia de 230 colones/Lit. leche y 530 colones/Kg carne. Sin embargo, esta valoración no incluye los valores

agregados de comercializar productos ganaderos *cero emisiones*, los cuales deberían aumentar el ingreso bruto por Ha.

- Respecto a la estrategia con un precio estimado de carbono bajo el mercado voluntario (4,7 US\$ por tonelada de CO₂e, *Carbon Positive Organization*) la transición de una pastura natural sin árboles a una pastura mejorada con alta densidad de árboles significaría entre 8 a 12 US/ha. Si a esto le agregamos una reducción del 10% las emisiones por fermentación entérica a nivel regional significaría ingresos por 152.149 US\$. Además la incorporación de biodigestores para reducir el 40% de las emisiones por manejo de residuos sólidos y líquidos significaría 1,1 millones de US\$.
- La estrategia REDD tiene potencial respecto a la gestión sostenible de las áreas de bosque de cual se podría inferir un valor de 836 US\$ por hectárea de bosque en función del Stock expresado en el capítulo de carbono en este documento. Sin embargo que el precio de referencia por tonelada de carbono varía a lo largo del tiempo. La valoración se desarrolló con un precio de referencia de 4,7 US\$ por tonelada de CO₂e, *Carbon Positive Organization*.
- El dilema en la toma de decisiones a nivel gubernamental es el costo de oportunidad de entrar a diversos mecanismos de mitigación de GEI. Si el sector ganadero decide entrar a una estrategia REDD los bosques ya no pueden ser considerados para el logro de la carbono neutralidad de sus productos finales (leche y carne), ya que el presupuesto de carbono de la finca ya está comprometido y al incluirlo se estaría incurriendo en doble contabilidad. Esto mismo sucede al entrar en el mercado de bonos de carbono voluntarios ya que existiría un costo de oportunidad de utilizar los excedentes del presupuesto de carbono para transformarlos en bonos o aumentar la frontera de producción de productos finales (leche y carne) carbono neutral.
- 5. El balance de Gases de Efecto Invernadero (GEI) se llevo a cabo para 6 fincas representativas de la región de Chorotega, Costa Rica. Las fincas evaluadas fueron sistemas doble propósito, engorde y lechería. Se utilizaron las ecuaciones del IPCC, modelación CO2FIX e información primaria por entrevistas presenciales. Además se utilizaron Sistemas de Información Geográfica (SIG) para digitalizar usos de suelo previo levantamiento de puntos a partir de GPS. Los usos de suelo de mayor aporte para el balance de GEI fueron los bosques; ripario y secundario. Las fincas doble propósito presentan un balance de GEI positivo o superavitario en promedio de 97 tCO2e. La finca de engorde y lechería presenta un balance negativo de -85,3 tCO2e y -111,7. Todas las fincas presentan un balance negativo de GEI si se excluyen las áreas de bosque dentro del balance.
- 6. Actualmente, los servicios ecosistémicos en la región afrontan una alta presión de la actividad ganadera. Esto se debe a que en la región el principal uso de la tierra es la ganadería, por lo cual se encuentra distribuida o cerca a ecosistemas de importancia para la biodiversidad y conservación del recurso hídrico, los cuales muchos están siendo afectados y otros son altamente vulnerables a las actividades propias de la

actividad ganadera como son la expansión de pasturas en monocultivo y las inadecuadas prácticas de manejo.

Debido a que varios corredores biológicos, áreas protegidas y humedales, ecosistemas de vital importantes para la conservación de la Biodiversidad se encuentran próximas o bajo uso ganadero, es importante identificar estrategias que permitan la conservación de dichos ecosistemas. Esto se podría lograr mediante un mayor énfasis en la protección de ecosistemas frágiles, así como un cambio de visión de la actividad ganadera la cual incluya una visión holística y amigable con el ambiente, lo cual permitirá garantizar la permanencia de la abundancia y riqueza de especias, así como su conectividad y funcionalidad.

Por otra parte, los recursos hídricos en los paisajes ganaderos de la región presentan una alta vulnerabilidad a degradación y contaminación por parte de la actividad ganadera. El evidente avance de la degradación de cauces y contaminación de cuerpos de agua por residuos orgánicos bien puede ser afrontado mediante la recuperación y establecimiento de bosques riparios y la masificación de tecnologías de manejo de residuos en fincas ganaderas.

Por otro lado, las emisiones generadas en la finca pueden ser compensadas con la incorporación de árboles y leñosas, lo cual contribuirá a la fijación de carbono atmosférico en el suelo. Este es un potencial de fijación de carbono que tienen la región alternativo a las tierras Kioto ya identificadas.

Asimismo, se deben identificar estrategias y lineamientos para aprovechar el potencial de tienen las fincas ganaderas para desarrollar turismo rural o ecológico, lo cual contribuiría a la generación de empelo e ingresos a los finqueros.

En síntesis, este primer análisis de generación de servicios ecosistémicos (SE) en paisajes ganaderos de la Región Chorotega, concluye que existen zonas con un alto potencial para provisión de SE en paisajes ganaderos; por lo que es necesario identificar y priorizar ciertas áreas en las cuales se deba hacer una pronta o urgente intervención. Esta priorización no quiere decir que las demás áreas o cantones no seleccionados no sean importantes, sino que por la categorización y análisis realizado su nivel de importancia no las califica como prioritarias.

La implementación de sistemas silvopastoriles y las buenas prácticas de manejo, podría contribuir a mejorar la provisión de servicios ecosistémicos en territorios ganaderos la región chorotega para lo cual sería necesario el apoyo del estado en el diseño de diferentes incentivos que sirvan de apalancamiento para la adopción de las nuevas formas de producir, entre los principales incentivos se cuenta el crédito verde o crédito diferenciado que financie actividades sostenibles en las fincas, un sistema de certificación de fincas que le permita a los productores aumentar la implementación de buenas prácticas y recibir beneficios en los precios de sus productos o el pago por servicios ambientales en fincas ganaderas como un instrumentos para la adopción de sistemas Silvopastoriles y buenas prácticas para la generación de biodiversidad, carbono, protección de agua y belleza escénica en la Región.

1. ASPECTOS GENERALES

La Provincia de Guanacaste, tiene una extensión de 10.140 km² las cuales presentan condiciones agro-ecológicas especiales, que a su vez han definido y caracterizado las actividades productivas que se desarrollan y los sistemas de producción utilizados en cada una.

El clima de la región es tropical seco con dos épocas bien definidas. La época seca que inicia a mediados de noviembre y finaliza a mediados de mayo y la lluviosa que comienza a mediados de mayo y concluye a mediados de noviembre (Comisión mixta de sequía, 2003). Guanacaste es una de las provincias de menor riqueza hídrica del país, y de hecho es la región más seca de Costa Rica. Su precipitación promedio anual en los últimos años es cercana a 1.729 mm, en contraste con el resto del país, donde la precipitación promedio es de 3.272 mm. Por otra parte, pese a que todo su territorio está regado por ríos, el caudal de su red hidrográfica, dominada por el río Tempisque y sus afluentes, como el Bebedero, disminuye notablemente durante la estación seca, que se prolonga en general, por cinco meses (de noviembre a mayo), afectando la actividad agropecuaria (MAG, 2007). La temperatura promedio es de 27° C, alcanzando cifras máximas de 36° C en los meses secos y una mínimas de 16° C.

En la Región Chorotega predominan los suelos conocidos como Inseptisoles, a los que corresponde un total de 384.000 hectáreas, con un uso actual en pastos, granos básicos, frutales, café, forestales y en menor escala, hortalizas. El segundo lugar lo ocupan los Alfisoles y en tercer lugar los Entisoles. En ambos predominan la ganadería, granos básicos, café, forestales y hortalizas (Comisión mixta de sequía, 2003).

1.1. GANADERÍA EN LA REGIÓN

Específicamente en la Región Chorotega, según información del Censo Ganadero del año 2001, existen 377.625 hectáreas de terreno ocupadas por la actividad ganadera, lo que representa un 38% del territorio regional. La población bovina es de 323.722 con la participación de 6.625 familias productoras, de las cuales el 70% se dedica a la producción de ganado de carne, el 22% a doble propósito y un 8% a producción de leche. El tamaño promedio de las fincas ganaderas de la región es de 57 hectáreas y el 81 por ciento de las unidades productivas son menores de 80 hectáreas lo cual indica claramente la amplia participación de pequeños y medianos productores y productoras en esta actividad.

La ganadería bovina es una de las principales actividades agropecuarias generadora de riqueza de la Región Chorotega ya que en las peores condiciones de manejo, una hectárea de terreno produce 150 Kg. de carne por año, lo cual significa que las 377.625 hectáreas

destinadas a esta actividad producen un total 56.643.750 kg de carne. Tomando como base un precio promedio de ¢650 el kilogramo de carne en pie, los ingresos brutos de esta actividad, en su fase primaria, se estiman en ¢36.818.000.000, cifra conservadora, si se toma en cuenta que en estos momentos existen fincas que trabajan con sistemas más intensivos y con mejor tecnología, alcanzando índices de producción superiores a lo tradicional. Por ejemplo se dispone de registros de fincas que han obtenido rendimientos de 1.308 Kg/ha/año, con una producción sostenida durante todo el año utilizando dietas balanceadas de forrajes producidos en la misma finca (Proyecto de Ganadería Sostenible. Cámara de Ganaderos de Hojancha, 2005).

En un muestreo realizado por CORFOGA en el año 2004, a 1.074 fincas productoras de carne en todo el territorio nacional se obtuvieron los siguientes resultados: Un 56% de los productores se dedica a Cría (venta de terneros al destete), el 27,6% a Doble propósito (producción conjunta de carne y leche) y 16,4 % a desarrollo o engorde.

El tamaño promedio de las fincas productoras de carne es de 35 hectáreas y 27 unidades animal. El 91% tiene menos de 80 ha, pero el 9% restante posee el 42% del hato nacional.

En cuanto a productividad en esta misma muestra se encontró que la tasa de natalidad se sitúa en un 54%, fluctuando entre un 49 y 63% según el sistema productivo. Debido a su baja natalidad estos sistemas generan una tasa de extracción de un 13% anual, resultando muy bajo, lo que limita la producción de carne. Esta baja tasa de extracción genera flujos de venta bajos y comercialización de ganado liviano; esto implica que la productividad anual en sistemas de doble propósito es de 41 kg de carne/ha/año, en Cría 44 kg/ha/año y Desarrollo-engorde 126 kg/Ha/año.

La carga animal promedio es 0,68 Unidades animal por hectárea, esto debido a la estacionalidad en la producción forrajera y al uso de sistemas extensivos. Las regiones con mayores precipitaciones anuales y con mayor presencia de lecherías especializadas presentan un uso más intensivo de la tierra. (MAG, 2007).

El punto de vista ambiental es muy significativo, y plantea la enorme necesidad de mejorar los sistemas de producción para evitar el deterioro del suelo, pues de todos es bien conocido que los sistemas de producción extensivos han provocado altos índices de degradación del suelo por erosión y compactación, consecuencia del sobrepastoreo, que reduce la capacidad de infiltración de agua y la fertilidad, afectando negativamente la productividad de las fincas.

Los seis meses de sequía característicos del clima de la región, constituyen la principal limitante para la ganadería de carne bajo los sistemas de producción extensivos. A pesar de

esto, la gran mayoría de los productores no se han preocupado por asegurar la alimentación del ganado durante esta época crítica, lo cual sigue provocando enormes pérdidas económicas, por la disminución del peso en animales de desarrollo y engorde, alta mortalidad de adultos y bajos índices de preñez. (MAG, 2007).

En los últimos años, surge como signo de cambio productivo una marcada tendencia en algunos cantones de la región, a intensificar la producción, haciendo un uso eficiente y racional de los recursos naturales utilizando pastos mejorados con sistemas de rotación de potreros y asegurando la alimentación del ganado en época seca, mediante el uso de caña de azúcar, leguminosas forrajeras, pastos de corta, ensilaje y sub productos de agroindustrias. Este sistema permite romper la estacionalidad de la producción ganadera y mantener el ciclo productivo constante durante todo el año, aumentar la capacidad de carga de los potreros y mejor sustancialmente la productividad de las fincas.

1.2. CAMBIO CLIMÁTICO EN LA REGIÓN

Los fenómenos derivados de la variabilidad climática característica de la región intertropical, se relacionan con aquellas anomalías meteorológicas que inciden de manera reiterada y persistente en la modificación de los patrones promedio de variables climáticas como temperatura, humedad y precipitación. En parte, esta incidencia es el resultado de la creciente vulnerabilidad, el cambio climático global que sugiere un aumento de la frecuencia e intensidad con que se presentan estos fenómenos, y la cada vez mayor amplitud geográfica y persistencia que tienen sus efectos, los cuales han adquirido un peso creciente sobre el esfuerzo económico y de desarrollo social que se realiza a nivel nacional.

Las variaciones meteorológicas inciden sobre la superficie de la tierra y sobre la estructura productiva agropecuaria de la Región Chorotega, a través de un exceso de agua o un déficit de la misma. Cualquiera de las dos formas en que se expresan los cambios en el clima, afectan los rendimientos, la productividad y la economía de las familias que dependen directamente de las actividades agropecuarias, los efectos de estas variaciones en la actividad ganadera Guanacasteca, se relacionan principalmente con problemas como; disminución de la disponibilidad forrajera, aumento de la mortalidad y morbilidad del ganado, deterioro de los índices productivos y un incremento extraordinario de los costos de producción (compra de suplementos alimenticios), enormes disminuciones de recursos hídrico disponible en la fincas y traslado de animales entre otros (Comisión mixta de sequía, 2003).

1.3. Emisión de gases de efecto invernadero y su efecto en el cambio climático

La causa de este cambio climático global es el efecto invernadero, el cual ocurre como consecuencia de la emisión de los gases de efecto invernadero (GEI). Los ganaderos están involucrados en esta discusión porque la ganadería es la responsable de una parte importante de la emisión GEI (Smith, 2008).

Desde un punto de vista global, las actividades relacionadas con la ganadería contribuyen con un 18 % (en equivalentes de CO2) de las emisiones antropogénicas de los GEI. Esto equivale incluso a un porcentaje más alto que las emisiones del sector del transporte (FAO citado por Sitio Agro Ganado. 2008). Para revertir esta tendencia, los Sistemas Silvopastoriles (SSP) son una alternativa para el mejoramiento de la producción ganadera y el medio ambiente pues posee gran cantidad de beneficios ambientales; éstos sistemas bien manejados, permiten mejorar tanto la calidad ambiental como la productividad pecuaria (FAO citado por Arias, 2007).

Las prácticas agropecuarias tradicionales juegan un importante papel ya sea adicionando gases efecto invernadero, resultado de las tecnologías de producción o, reduciéndolos mediante su captura en la biomasa. Durante el pastoreo una porción de pasto ofrecido no es consumido, parte de estos residuos son incorporados como materia orgánica en el suelo e incrementa la cantidad de carbono en el mismo. El suelo juega un rol importante en la acumulación del carbono, y es el resultado de la descomposición de la materia orgánica proveniente de la hojarasca, las raíces de los pastos, los árboles, y el aporte de las excretas de los animales.

La mayor parte de trabajos para determinar carbono en SSP, provienen de modelos ideados para bosques, lo que representa una limitante por las adaptaciones y modificaciones que deber realizarse de los mismos. Además, hasta el momento las investigaciones no han considerado el secuestro del carbono por parte del componente animal, que representa un eslabón muy importante dentro de SSP.

1.3.1. La relación de la ganadería y los Gases de Efecto Invernadero en Costa Rica

La expansión e intensificación de la ganadería ha contribuido a problemas globales en el ambiente, sin embargo, también son parte de la solución (Rowlinson 2008). Si bien es reconocido que la ganadería trae consigo problemas ambientales, también se reconoce que alberga un gran potencial de brindar servicios ecosistémicos y sustentar una importante porción de la economía de los países en vías de desarrollo.

La actividad ganadera presenta dos aspectos de importancia global; la deforestación y las emisiones de Gases de Efecto Invernadero (GEI) provenientes del sistema ganadero. Según el inventario nacional de Costa Rica realizado para el año 1999 el 73% de las emisiones de CO₂ correspondieron a cambios de uso de suelo y 83% de las emisiones de CH₄ correspondieron a fermentación entérica, cultivo de arroz y manejo de residuos. Respecto al N₂O se aprecia una participación similar, el 70% de las emisiones proviene del sector agrícola, no obstante no se tienen datos específicos respecto a la aplicación de fertilizantes nitrogenados, pero se tiene conocimiento de que es una actividad importante dentro de la curva de emisiones.

En términos generales las causas de las emisiones en la ganadería se pueden resumir de la siguiente manera (Steineld 2006):

- ✓ Cambios de usos de suelo para la producción de granos o pasturas.
- ✓ Manufactura y aplicaciones de fertilizantes nitrogenados.
- ✓ Establecimiento de la actividad ganadera en zonas degradadas o no aptas para la actividad induciendo a la desertificación.
- ✓ Utilización de energías fósiles para transporte, procesamiento y refrigeración de los productos animales.
- ✓ Proceso de fermentación entérica y manejo de residuos sólidos y líquidos.

Existe mucha discusión sobre los niveles de emisión y fijación de carbono en los sistemas agropecuarios, en muchos casos injustamente se promueve a la ganadería como una actividad emisora de gases de efecto invernadero, sin la mínima consideración que muchas fincas ganaderas fijan grandes cantidades de carbono, sea a través de la conservación de los bosques, reforestación, establecimiento de pasturas mejoradas, las cercas vivas, la producción de biogás a partir de excretas y otras técnicas más, que reducen y en muchos casos neutralizan los GEI emitidos. La necesidad de entregar información e indicadores metodológicamente consistentes permitirá a los tomadores de decisión orientar los recursos

de reducción y compensación de emisiones de GEI en los componentes o procesos de mayor impacto. La cuantificación de emisiones fue uno de los temas tratados en el "Plan de Acción Bali" publicado a partir de la conferencia de las partes (COP) realizada en Diciembre del 2007 en Bali, Indonesia. En este documento se establece que todas las emisiones deben ser: medibles, reportables y verificables. A partir de la conferencia de las partes (COP) de Naciones Unidas sobre el Cambio Climático realizada en Diciembre 2009 en Copenhague. La tendencia global apunta hacia la transformación de los modelos productivos y a la disminución de la deforestación y la degradación de las tierras, así como a la búsqueda de la competitividad y la eficiencia ambiental en las actividades productivas del sector rural. Este nuevo escenario internacional conlleva a realizar un análisis no solo respecto a las emisiones dentro de la finca, sino evaluar la intensidad de emisiones ganaderas a través de la óptica de la cadena de producción. En este sentido conocer los encadenamientos productivos de los sistemas ganaderos, la configuración del mercado de la leche y carne tanto a nivel regional como nacional, las oportunidades a partir de la generación de servicios eco sistémicos y las vulnerabilidades climáticas y de mercado que se ven expuestos los productores son variables de vital importancia para tener una planificación estratégica del sector en el marco de las nuevas políticas globales que se vislumbran para los años venideros.

Surge entonces la necesidad de realizar un Balance de Gases de Efecto Invernadero en la Región Chorotega, el cual permitirá comparar las cantidades emitidas y fijadas de equivalentes de CO₂, y analizar los factores que intervienen en el proceso, para tratar de prever su evolución y de esta forma poder conocer si las fincas ganaderas en la región son emisoras o almacenadoras netos y, cual (es) componente (s) está (n) influyendo positiva o negativamente en dicho balance. En el caso de las fincas que funcionan como depósitos de CO₂ atmosférico, tendrían el potencial para: i) comercializar estos depósitos en el mercado nacional o internacional y/o posicionarse como oferentes de servicios ambientales, derivados de la implementación de SSP y buenas prácticas ganaderas en las fincas

El presente estudio de balance de gases de efecto invernadero en fincas de ganadería bovina en Guanacaste, buscó determinar el potencial de generación de Servicios Ambientales y la valoración de venta de carbono a nivel global, de tal forma que se mejore la productividad de los sistemas ganaderos, se cambie la imagen de la actividad hacia una amigable con el ambiente y permita la diversificación de las fincas

2. OBJETIVOS

Para el desarrollo del presente estudio se han planteado los siguientes objetivos:

2.1. GENERAL

Determinar el balance de gases de efecto invernadero en fincas de ganadería bovina de la región Chorotega (carne y doble propósito) y su potencial para la generación de servicios ambientales como atributos para mejorar la competitividad en las fincas.

2.2. ESPECÍFICOS

- 1. Medir el balance de gases de efecto invernadero en sistemas de producción de ganadería bovina en fincas representativas de la región Chorotega
- 2. Determinar la generación de servicios ambientales actuales y potenciales como biodiversidad, belleza escénica, fijación de carbono, producción de agua y disminución de la erosión, entre otros de las fincas ganaderas de la región Chorotega.
- 3. Extrapolar los datos de fincas evaluadas para determinar el potencial de venta servicios de carbono en fincas ganaderas en la región de Chorotega.
- 4. Hacer un análisis económico para estimar el costo de inversión para la generación de beneficios de venta de servicios de carbono y costo de oportunidad por tonelada carbono (equivalente) capturado.

Este es el informe final del estudio mención. Con el propósito de abarcar y cumplir con los objetivos propuestos, se definieron actividades por productos enmarcados dentro de capitulo que a continuación se presenta , los capítulos se abordaron desde una parte introductoria, la definición de la metodología aplicada, los resultados y unas breves conclusiones, para una mayor compresión se presenta al comienzo de cada capítulo un breve resumen del contenido del mismo, que ayude a tener una mayor comprensión de las temáticas que abarca el capitulo.

3. CAPITULO 1: IDENTIFICACIÓN Y CARACTERIZACIÓN DE AL MENOS 16 FINCAS REPRESENTATIVAS DE LA REGIÓN CHOROTEGA

3.1. Resumen

La región de Guanacaste una diversidad agro- ecológica importante, lo que define los sistemas de producción de la región, la principal actividad generadora de ingresos es la ganadería, y más de un 38% de su territorio está destinado a esta actividad. Los sistemas de mayor participación corresponde a la producción de carne (mas del 70%), seguida del doble propósito y en, menor proporción por los sistemas de producción de leche.

Para efectos del estudio y con el apoyo de expertos de la oficina regional del Guanacaste del Ministerio de Agricultura MAG de Costa Rica, se seleccionaron 16 fincas representativas en la región, y pertenecientes a los tres sistemas de producción predominantes (para tener mayor confiabilidad en los datos), lo anterior con el objetivo de obtener información biofísica, ambiental y socioeconómica que permitió caracterizarlas. - a pesar que el estudio definió una muestra de solo 6 fincas de los sistemas de producción de carne y doble propósito-. Cabe mencionar que al final solo fue posible desarrollar el estudio con 13 fincas, en tres fincas no se pudo concretar el estudio por razones como: falta de información, falta de colaboración por parte del productor y la presencia de un incendio en otra.

Se obtuvo información para caracterización de fincas por medio de encuestas, tres en total: i) para obtener información relacionada con la actividad ganadera como tal, ii) información útil para el cálculo de emisiones de gases efecto invernadero y iii) información relacionada con la provisión de servicios ambientales en la Región Chorotega. Adicionalmente se tomaron coordenadas geográficas de cada uno de los usos de la tierra de las fincas seleccionadas y mediante la ayuda de imágenes satelitales se construyeron los croquis de cada una de las fincas, los cuales incluyeron información de los diferentes usos de los suelos, área, delimitación geográfica, linderos etc. Se aplico la metodología de verificación de la información directamente con los productores en el campo. En las fincas que no se logró obtener las fotos satelitales se realizó un levantamiento de punto por medio de GPS para luego generar mapas digitales con la debida clasificación de los usos de suelo, se construyeron los mapas georeferenciados de cada una de las fincas que después de la entrega de este informe serán entregados a los productores. Con la información recolectada, se construyeron 3 bases de datos, la cual hace parte de la línea base para futuros estudios en la Región

También se tomaron muestras de diferentes usos del suelo en varias fincas para determinar la captura de carbono a nivel del suelo y en la biomasa y con la aplicación de diferentes formulas de la ecuación Tier 1, 2 y 3 del IPCC, se calculo la emisión de GEI en las 13 fincas. Con la información de la cuantificación de la captura de carbono y emisión de gases efecto invernadero se determinó el balance de balances de gases y el potencial de cada una para la generación de servicios ambientales, esta información fue útil para extrapolar los datos a la Región Chorotega y poder dar una recomendación sobre la forma de establecer fincas que se acerquen a la carbono neutralidad, así como también se pudo identificar las

principales en la los lugares con mayor densidad de ganadería y las zonas con mayor oportunidades para la generación de servicios ambientales en la Región.

3.2. Metodología

3.2.1. Selección de fincas participantes en el estudio

El presente estudio fue contratado para realizarse en 6 fincas representativas de la región chorotega; sin embargo, el equipo consideró trabajar con una muestra de 16 fincas con el objetivo de ampliar el tamaño de la muestra y obtener una mayor cantidad de datos. Lo cual permitirá con un mayor grado de confiabilidad extrapolar los datos del análisis a toda la región.

- Base de datos del Gusano Barrenador, para la región de Guanacaste: Se consulto esta base de datos para conocer algunos aspectos generales de las fincas en la Región y tener un conocimiento general del el tipo de sistema para representativo y algunas características biofísicas y socioeconómicas de las fincas de la región.
- Consulta con expertos del MAG e informantes claves: se realizaron consultas a las diferentes oficinas del MAG y a cámaras de ganaderos para conocer características generales de las fincas por cantón.
- Reunión con Expertos del MAG: se llevo a una reunión con el director de la Regional de del MAG para Guanacaste y el Director de la Agrocadena de Carne, para hacer una zonificación del área según las condiciones biofísicas, especialmente climáticas (lluvias y sequía), suelos y condiciones socio-económicas. Esta información fue muy importante en la definición de las fincas, en vista que la cantidad de carbono que se captura se ve afectada principalmente por los patrones de lluvias, tipo de vegetación y tipo suelo. Con base en lo anterior se definieron los criterios de selección para identificar las tipos de fincas, los cuales estuvieron relacionados directamente con tamaño, sistema de producción, representatividad en la Región, accesibilidad al predio, ubicación geográfica y productor dispuesto a aportar información.

En el cuadro 1 se muestra la relación de fincas seleccionadas:

Cuadro 1. Listado de fincas seleccionadas para el estudio de determinación de Gases Efecto Invernadero en la Región Chorotega

Código	Nombre del propietario	Sistema de producción	Cantón	Distrito
1_201	Álvaro Quesada Hernández	Doble propósito	Carrillo	Sardinal
1_202	Modesto Bolaños Bolaños	Doble propósito	La Cruz	La Cruz
1_203	Margarita Gonzales Sancho	Doble propósito	Hojancha	Hojancha

1_204	Miguel Francisco Paniagua	Cría	Hojancha	Hojancha
1_205	Josué León Vargas Quesada	Doble propósito	Hojancha	Puerto Carrillo
1_206	Carlos Mejías Rodríguez	Cría	Hojancha	Guapinol
1_207	Daniel Espinoza Espinoza	Cría	Liberia	Cañas Dulces
1_208	Daniel Castro Díaz	Doble propósito	Nicoya	San Antonio
1_209	Rafael Ángel Guevara Matarrita	Doble propósito	Nicoya	Quebra Honda
1_210	Jairo Quiroz Castro	Doble propósito	Upala	Aguas Claras
1_211	Isaías Alvares Murillo	Cría	Cañas	Cañas
1_212	Marino Jiménez Muñoz	Engorde	Tilarán	Santa Rosa
1_213	Juvenal Sánchez Chávez	Engorde	Cañas	Cañas
1_214	Arnulfo Rodríguez González	Cria	Abangares	Abangares
1_215	Leonidas Villegas Cortes	Desarrollo	Nicoya	Quebra hona
1_216	Ulises Rodriguez Rodriguez	Doble propósito	Nandayure	San Pedro

3.2.2. Encuestas

Mediante secciones de Talleres con expertos del Programa GAMMA y especialistas del estudios se, diseñaron 3 encuestas, relacionadas con los siguientes temas: i) Encuesta de competitividad ganadera, incluye aspectos relacionados con: la información general de la finca, datos del productor y su familia, información biofísica, disponibilidad y uso de la mano de obra, producción de leche/día, producción de Kg de carne/día, aspectos socioeconómicos relacionados con los activos e infraestructura de la finca, composición del hato ganadero, manejo del recurso hídrico, manejo de las pasturas, manejo de la alimentación en época de verano e invierno, sanidad animal, tecnologías productivas innovadoras y mecanismo de financiamiento, e información relacionada con los costos de producción de la actividad e ingresos derivados de la actividad ganadera entre otros. (Anexo 1) esta información es útil para caracterizar biofísica y socioeconómica las fincas del estudio, esta encuesta fue diseñada en el Estudio de Competitividad para las Transformación de Sistemas Tradicionales de Producción Ganadera a Modelos de Producción Sostenible ", ii) Encuesta de Gases Efecto Invernadero (GEI):, esta consideró aspectos relacionados con las fuentes de emisión de Gases Efecto Invernadero uso y consumo de energía de vehículos, equipos etc., manejo de residuos líquidos y sólidos, manejo de fuentes de alimentación y suplementación, producción y precio de venta en época seca e invierno, etc. en época de verano e invierno, etc. (Anexo 2), información necesaria para estimar la línea base de las emisiones y calcular el balance de gases y iii) Encuesta sobre servicios ambientales; toca temas de Biodiversidad, Recursos Hídrico, Belleza escenifica, Carbono, esquemas de PSA y mecanismos de compensación (Anexo 3), encuesta útil pata determinar la percepción que tienen los finqueros sobre los beneficios de generación de servicios ambientales mediante la implementación de tecnologías Silvopastoriles y buenos practicas, además de los incrementos de la productividad que podrían tener en sus fincas, adicionalmente para conocer datos claves en la búsqueda de potencialidades a nivel de la Región en el tema de la generación de los servicios ambientales como una ruta para mitigar los gases de efecto invernadero y lograr la neutralidad de carbono en las fincas.

3.2.3. Bases de datos

Para la digitalización de las encuestas realizadas a los productores en la región de Chorotega se diseño dos bases de datos en Microsoft Excel 2007, la primera fue utilizada para ingresar los datos de caracterización de las tipologías de fincas ganaderas, la cual tuvo un total de 46 preguntas distribuidas en los diferentes capitales que presenta la finca como son el capital natural, físico, humano, social y económico.

La segunda base de datos se realizo para el análisis de las encuesta de la percepción deservicios ambientales los servicios ambientales evaluados en este proyecto: Biodiversidad, recurso hídrico, Belleza escénica e incentivos por la generación de estos servicios (pago por servicios ambientales).

3.2.4. Caracterización de las fincas

Con la información recopilada mediante las encuestas se caracterización las fincas en diferentes temas relacionados con aspectos socioeconómico, en este informe, presentamos aspectos de educación, usos de suelo, inventario del hato, principales especies de árboles y pastos presentes en las fincas y algunos aspectos relacionados con el tema de cambio climático y las acciones que implementan los productores para adaptarse a sus efectos.

En el cuadro 2 se observa que un 50% de los productores solo tuvo acceso a la educación técnica y universitaria y el otro 50% solo a la primaria, además el 100% de los productores ha tenido acceso a capacitación en diferentes temas de ganadería y ambiente, adicionalmente puede notarse que todos los productores hacen parte se organizan y pertenecen a diferentes organizaciones de productores presentes en la Región Chorotega, situación que los respalda como productores ganaderos organizados y les permite obtener mayores oportunidades de capacitación y gestión de recursos en algún momento dado.

Cuadro 2. Datos Sociales-Productivos

Finca	Escolaridad	Temas de Capacitación	Organización a la que pertenece
Álvaro Quesada Hernandez	Técnica	Renovación de pastos, manejo de hatos, ensilaje	Cámara de Ganaderos de Carrillo
Modesto Bolaños Bolaños	Primaria	Manipulación de alimentos, registros contables	Cámara de Ganaderos de la Cruz - Cruz Roja
Margarita Gonzales Sancho	Primaria	semilla pasto mejorado	Cámara de ganaderos - Centro agrícola
Miguel Francisco Paniagua	Secundaria	ganadería y bancos de riego, bancos forrajeros	Cámara de ganaderos de Hojancha
José León Vargas Quesada	Universitaria	hortalizas, lechería, cultivador de maíz, engorde de ganado	Cámara de ganaderos de Hojancha
Carlos Mejía Rodríguez	Primaria	manejo de pasturas y ganadería	Cámara de ganaderos
Daniel Espinoza Espinoza	Universitaria	producción tecnológica Agropecuaria y desarrollo sostenible	Cámara de ganaderos de Liberia, SUA Sociedad, Corfoga
Daniel Castro Díaz	Técnica	ensilajes	AGASBA asociación de productores agropecuarios de Santa Bárbara
Rafael Ángel Guevara Matarrita	Técnica	pastos, asuntos contables, manejo de ordeño, inseminación artificial	Asociacion de productores de leche
Jairo Quirós Castro (persona entrevistada)	Universitaria	uso de desechos	Dos pinos y a la Cámara de Ganaderos de la Fortuna
Isaías Alvares Ramírez	Técnica	manejo de pasturas y ganadería	Cámara de Ganaderos, Federación de Cámara de Ganaderos de Guanacaste, Federación de Cámara de Ganaderos de Costa Rica, CORFOGA
Marino Jiménez Muñoz	Primaria	Mejoramiento de pastos	Cámara de Ganaderos de Tillarán
Juvenal Sánchez Chávez	Universitaria	Manejo de pasturas y ganadería	

Finca	Escolaridad	Temas de Capacitación	Organización a la que pertenece		
Arnulfo Rodríguez González	Primaria	manejo de pasturas y ganadería	Cámara de Ganaderos de Abangares		
Leonidas Villegas Cortes	Primaria	Uso de residuos en fincas ganaderas	Asociacion de desarrollo integral		
		Mejoramiento de pastos y nutrición de	Cámara de Ganaderos de Nandayure,		
Ulises Rodriguez Rodriguez	Primaria	animales	Asociacion De Productores San Pedro		
		animales	de Nandayure		

Dado que cada finca tiene su orientación productiva se construyó el cuadro 3 para detallar esta información, así como un resumen de las principales razas que se manejan en cada finca así como el método de manejo reproductivo utilizado y el porcentaje de parición.

Cuadro 3. Sistema productivo

Finca	Orientación de la producción	Raza	Manejo Reproductivo	% Parición
Álvaro Quesada Hernandez	Doble propósito	no indica	Monta Natural	80
Modesto Bolaños Bolaños	Doble propósito	Brahmán, Pardo, Holstein	Monta Natural	60
Margarita Gonzales Sancho	Doble propósito	Brahmán blanco, Simental	Monta Natural	40
Miguel Francisco Paniagua	Doble propósito	Brahmán blanco, Nelore y Hererford	Monta Natural	no indica
José León Vargas Quesada	Doble propósito	Brahmán, Simental, Holstein rojo	Monta Natural	80
Carlos Mejía Rodríguez	Doble propósito	Brahmán blanco, Nelore, Cebú, Pardo Suizo	Monta Natural	30
Daniel Espinoza Espinoza	Doble propósito	Brahmán gris, Pardo Suizo, Nelore	Monta Natural	66
Daniel Castro Díaz	Doble propósito		Monta Natural	50
Rafael Ángel Guevara Matarrita	Doble propósito	Pardo Suizo, Holstein, Simental, Holstein Rojo, Normando	Inseminación Artificial	89

Finca	Orientación de la producción	Raza	Manejo Reproductivo	% Parición
Jairo Quirós Castro	Mixto (Ganadería + Agricultura)	Jersey, Holstein	Monta Natural	80
Isaías Alvares Ramírez	Doble propósito	Holstein ,Jersey, Brahmán, Pardo	Inseminación Artificial	
Marino Jiménez Muñoz	Engorde	Brahmán, Pardo, Simental, Simbra	Monta Natural	80
Juvenal Sánchez Chávez	Engorde	Brahmán, Simental, Nelore	Monta Natural	
Arnulfo Rodríguez González	Doble propósito	Holstein, Jorsey, Brahmán, Pardo Suizo	Monta Natural	80
Leonidas Villegas Cortes	Desarrollo	Nelore, Brahmán	Monta Natural	
Ulises Rodriguez Rodriguez	Mixto (Ganadería + Agricultura)	Brahmán, Jersey, Normando	Monta Natural	85

Respecto a los usos del suelo de las fincas se notó que el uso predominante son las pasturas mejoradas de baja densidad de árboles, seguido por pasturas naturales de alta densidad y en tercer lugar bosques riparios; por otro lado puede observarse que el uso menos predominante en las fincas ganaderas son los frutales. En el Cuadro 4 se muestran los usos de la tierra por cada una de las fincas.

Cuadro 4. Uso del la tierra en las fincas del estudio

Productor	PMBDA	PNADA	BR	PF	PNBDA	BS	PNSA	PD	BFG	BFL	PMSA	Ta	In	Gb	Fru	PMADA	Total
Modesto Bolaños	3,17	7,21	1	3,96	15,95	6,51	1	-	0,25	-	-	1	0,37	0,39	-	-	37,80
Margarita Gonzales	12,08	-	14,77	3,61	13,91	-	-	0,17	1,98	-	1,09	-	0,64	-	-	5,31	53,55
Miguel Paniagua	6,82	11,31	4,70	0,60	19,47	5,57	-	8,28	2,28	-	-	1,27	0,42	-	-		60,72
Jose Leon Vargas	35,70	0,15	11,10	-	-	9,34	14,11	0,14	1,02	-	-	-	0,19	0,97	-	18,67	91,39
Carlos Mejías	19,10		20,74	25,74	-	ı	ı	-	1,21	0,11	1,82	-	0,08	-	-		68,79
Daniel Espinoza	20,31	48,77	9,10	2,42	11,63	I	18,19	-	2,56	-	-	ı	-	1	-	22,79	135,77
Daniel Castro	5,10	3,63	1,71		2,69	12,48		5,73	1,25	0,28	-	1,29	0,23	2,12	-	2,01	38,52
Rafael Guevara	5,98	-	1	1	-	5,66	1	-	0,71		8,97		0,42	0,26	-	3,19	25,19
Jairo Quiroz	16,60	-	1	1	-	2,94	1	-	-	-	-	ı	0,20	1	0,30	-	20,04
Isaías Álvarez	31,82	-	1	1	-		1	-	0,85	0,18	-	1	1,23	1	-	-	34,08
Juvenal Sanchez	71,55	-	-	-	-	0,26	1	-	-	-	-	-	0,01	-	-	-	71,82
Arnulfo Rodriguez	22,24	-	2,38	1,34	0,63		1	-	0,69	-	0,14	-	0,65	-	-	1,71	29,77
Ulises Rodriguez	7,98	_	5,71	4,04	_	0,81	-	0,96	1,46	0,25	-	-	0,39	0,83	-		22,42

Donde: PMBDA= Pastura mejorada baja densidad de árboles; PNADA= Pastura natural alta densidad de árboles; BR= Bosque ripario; PF= Plantación forestal; PNBDA= Pastura natural baja densidad de árboles; BS= Bosque secundario; PNSA= Pastura natural sin árboles; PD= Pastura degradada; BFG=Banco forrajero de gramíneas; BFL= Banco forrajero de leñosas; PMSA; Ta= Tacotal; In= Infraestructura; Gb= Granos básicos; Fru= Frutales y PMADA= Pastura mejorada alta densidad de árboles.

Adicionalmente se realizó un consolidado por los usos del suelo presentes en la finca y se sumaron las áreas por cada uno, en el cuadro 5 puede observarse que el uso de suelo predominante son las pasturas mejoradas de baja densidad, seguidas por las pasturas mejoradas de alta densidad.

Cuadro 5. Consolidado de usos de la tierra de las fincas seleccionadas

Uso de la Tierra	Área (ha)
Pastura Mejorada BDA	255,261
Pastura Natural ADA	71,062
Bosque Ripario	70,222
Pastura Natural BDA	67,432
Pastura Mejorada ADA	53,665
Bosque Secundario	43,565
Plantación Forestal	41,699
Pastura Natural SA	32,290
Pastura Degradada	15,284
Banco Forrajero	15,059
Pastura Mejorada SA	12,031
Infraestructura	4,833
Granos Básicos	4,575
Tacotal	2,562
Frutales	0,295

Donde: BDA= baja densidad de árboles; ADA= alta densidad de árboles y SA= sin árboles

Se recopiló información sobre el hato para los datos ajustados del inventario total en cada una de las fincas. En el Cuadro 6 se muestra la cantidad de animales que cada finca posee en inventario, los que están en producción de leche y los que pertenecen a actividad de engorde.

Cuadro 6. Inventario Animal de las fincas seleccionadas

					Inv	entario del	hato					
Finca	Vacas paridas	Vacas secas	Novillas > 2 años	Novillas 1-2 años	Novillos > 2 años	Novillos 1–2 años	Terneros	Terneras	Toros	Bueyes	Caballos	Total
Álvaro Quesada Hernández	10	6	4	5	-	-	5	4	1	-	2	37
Modesto Bolaños Bolaños	11	14	5	5	-	-	10	2	1	-	4	52
Margarita Gonzales Sancho	26	-	-	-	-	-	12	26	2	1	2	69
Miguel Francisco Paniagua	70	-	-	-	-	-	13	35	4	-	7	129
José León Vargas Quesada	40	-	-	18	-	-	40		2	-	2	102
Carlos Mejía Rodríguez	20	-	-	-	-	-	25	10	2	-	-	57
Daniel Espinoza Espinoza	42	22	15	25	24	11	9	7	3	-	2	160
Daniel Castro Díaz	15	30	7	5	2	10	14	10	2	-	7	102

					Inv	entario del	hato					
Finca	Vacas paridas	Vacas secas	Novillas > 2 años	Novillas 1-2 años	Novillos > 2 años	Novillos 1–2 años	Terneros	Terneras	Toros	Bueyes	Caballos	Total
Rafael Ángel Guevara M	16	12	8	8	-	3	9	7		-	1	64
Jairo Quirós Castro	50	-	-	-	-	-	-	20	1	-	-	71
Isaías Alvares Ramírez	2	4	3	8	-	-	1	1	1	-	20	40
Marino Jiménez Muñoz	36	-	100	30	-	-	-	-	4	-	5	175
Juvenal Sánchez Chávez	-	-	80	-	-	100	-	-			5	185
Arnulfo Rodríguez González	8	5	2	1	-	-	5	3	1	-	5	30
Leonidas Villegas Cortes	-	-	-	40	-	-	-	-	-	-	1	41
Ulises Rodriguez Rodriguez	-	8	9	-	-	6	-	-	-	-	-	23

Respecto a los ingresos derivados de la actividad ganadera se supo que solo la mitad de los finqueros obtiene el 100% de sus ingreso provenientes de la ganadería, el restante grupo deriva algún porcentaje de sus ingreso provenientes de actividades complementarias que realizan en la misma finca, como cría de especies menores o actividades agrícolas, mientras que otras obtienen ingresos adicionales de actividades fuera de la finca, en el cuadro 7 se muestra la relación.

Cuadro 7. Flujos de ingreso en la finca

Finca	Actividad (rubro	% de ingreso de
	productivo)	la ganadería
Álvaro Quesada Hernández	Ganadería Bovina	100
Modesto Bolaños Bolaños	Ganadería Bovina	100
Margarita Gonzales Sancho	Ganadería Bovina	100
Miguel Francisco Paniagua	Ganadería Bovina	100
	Ganadería Bovina	90
José León Vargas Quesada	Ganadería Menor (aves,	10
	cerdos, otros)	
Carlos Mejía Rodríguez	Ganadería Bovina	100
	Ganadería Bovina	70
Daniel Espinoza Espinoza	Agricultura	10
	Fuera de la Finca	20
Daniel Castro Díaz	Ganadería Bovina	70
Damer Castro Diaz	Fuera de la Finca	30
Rafael Ángel Guevara Matarrita	Ganadería Bovina	100
Jairo Quirós Castro	Ganadería Bovina	100
Isaías Alvares Ramírez	Ganadería Bovina	30
Isaias Aivaies Raimiez	Fuera de la Finca	70
Marino Jiménez Muñoz	Ganadería Bovina	50
Warmo Jimenez Wunoz	Fuera de la Finca	50
	Ganadería Bovina	10
Juvenal Sánchez Chávez	Agricultura	10
	Fuera de la Finca	80
Arnulfo Podríguez Conzólez	Ganadería Bovina	30
Arnulfo Rodríguez González	Fuera de la Finca	70
Lagridae Villagae Cortae	Ganadería Bovina	60
Leonidas Villegas Cortes	Fuera de la Finca	40
Ulises Rodriguez Rodriguez	Ganadería Bovina	100

Las fincas implementan innovaciones y adoptan diferentes tecnologías productiva y de conservaciones que les sirven para realizar actividades de de producción de manera más eficiente, estas implementaciones son posibles a la implementación de diferentes mecanismos de inversión, en el cuadro 8 se identifican las principales Innovaciones y los mecanismo utilizados por los productores

Cuadro 8. Innovaciones de la finca

Finca	Innovación tecnológica	Mecanismo de inversión
Álvaro Quesada Hernandez	Cercas Vivas, Bancos Forrajeros, Uso de registros productivos	Pagos por servicios ambientales, Asistencia Técnica, Fondos propios
Modesto Bolaños Bolaños	Cercas vivas, Bosque ribereños y Caminos	Crédito y fondos propios
Margarita Gonzales Sancho	Cercas Vivas, Arboles dispersos en potreros, Bancos Forrajeros, Pasturas mejoradas con árboles, Protección de Nacientes, Uso de registros sanitarios	Crédito
Miguel Francisco Paniagua	Cercas Vivas, Arboles dispersos en potreros, Bancos Forrajeros, Pasturas mejoradas con árboles, Reforestación, Protección de Nacientes, Uso de registros reproductivos, Uso de registros sanitarios	Crédito
José León Vargas Quesada	Cercas Vivas, Arboles dispersos en potreros, Bancos Forrajeros, Pasturas mejoradas sin árboles, Protección de Nacientes, Uso de registros reproductivos, Uso de registros sanitarios	Asistencia Técnica
Carlos Mejía Rodríguez	Cercas Vivas, Arboles dispersos en potreros, Bancos Forrajeros, Pasturas mejoradas con árboles, Protección de Nacientes, Uso de registros reproductivos, Uso de registros sanitarios	Crédito
Daniel Espinoza Espinoza	Cercas Vivas, Pasturas mejoradas con árboles, Reforestación, Cercas Vivas y Bosques ribereños	Crédito
Daniel Castro Díaz	Bancos forrajeros, Pasturas mejoradas con arboles	Donaciones, Crédito

Finca	Innovación tecnológica	Mecanismo de inversión
Rafael Ángel Guevara Matarrita	Pasturas mejoradas sin árboles, Reforestación, Protección de nacientes, Uso de registros sanitarios	Asistencia Técnica, Donaciones, Fondos Propios
Jairo Quirós Castro	Bancos Forrajeros, Pasturas Mejoradas sin árboles, Tratamiento de aguas residuales, Reforestación, Protección de nacientes, cerca eléctrica, Uso de registros productivos y sanitarios	Donaciones y Fondos propios
Isaías Alvares Ramírez	Cercas vivas, Arboles dispersos en potreros, Bancos forrajeros, Pastura mejorada con árboles	Fondos Propios
Marino Jiménez Muñoz	Pasturas mejoradas con árboles, Protección de nacientes, Cercas eléctricas	Fondos Propios
Juvenal Sánchez Chávez	Pasturas mejoradas con árboles, Cerca eléctrica, Uso de registros sanitarios	Fondos Propios
Arnulfo Rodríguez González	Cercas vivas, Pasturas mejoradas con árboles, Reforestación	Fondos Propios
Leonidas Villegas Cortes	Pasturas Mejoradas con árboles, Protección de nacientes, Cerca Eléctrica	Fondos Propios
Ulises Rodriguez Rodriguez	Cercas Vivas, Arboles dispersos en potreros, Bancos Forrajeros, Pasturas mejoradas con arboles	Donaciones y Fondos Propios

En las fincas muestreadas la producción de leche está entre 3 a 13 litros/ vaca/día en la época lluviosa y de 1 a 11 litros/vaca/día en la época; produciéndose queso en algunas de las fincas en la época lluviosa (cuadro 9). La marcada disminución de la producción de leche en la época seca, a parte de las condiciones climáticas, podría deberse a la falta de disponibilidad de alimento y carencia de implementación de prácticas o tecnologías que permitan la disponibilidad de fuentes de suplementación alimenticia en épocas críticas.

Cuadro 9. Producción láctea

		ón de leche	Producción de queso			
Finca	Kg/día	/animal	(Kg)			
	Lluviosa	Seca	Lluviosa	Seca		
Álvaro Quesada Hernandez	4	0	720			
Modesto Bolaños Bolaños	4	2,2	1000	820		
Margarita Gonzales Sancho	7	5				

Finca		n de leche /animal	Producción de queso (Kg)		
	Lluviosa	Seca	Lluviosa	Seca	
Miguel Francisco Paniagua					
José León Vargas Quesada	6	6			
Carlos Mejía Rodríguez					
Daniel Espinoza Espinoza					
Daniel Castro Díaz	3	2	10	8	
Rafael Ángel Guevara Matarrita	10	10			
Jairo Quirós Castro	13	11			
Isaías Alvares Ramírez					
Marino Jiménez Muñoz					
Juvenal Sánchez Chávez					
Arnulfo Rodríguez González	5	4	1080	720	
Leonidas Villegas Cortes					
Ulises Rodriguez Rodriguez	2	1	2		

Referente a la ganancia de peso, en fincas doble propósito, los mejores incrementos de peso se presentan en la época lluviosa debido principalmente a la disponibilidad de alimento (Cuadro 10).

Cuadro 10. Ganancia de Peso

Finca	Ganancia de Peso Vivo (gr/día/animal)			
	Lluviosa	Seca		
Álvaro Quesada Hernández				
Modesto Bolaños Bolaños	710	650		
Margarita Gonzales Sancho	800	500		
Miguel Francisco Paniagua				
José León Vargas Quesada				
Carlos Mejía Rodríguez	600	600		
Daniel Espinoza Espinoza	750	650		
Daniel Castro Díaz				
Rafael Ángel Guevara Matarrita				
Jairo Quirós Castro				
Isaías Alvares Ramírez				
Marino Jiménez Muñoz	700	650		
Juvenal Sánchez Chávez				
Arnulfo Rodríguez González				

Leonidas Villegas Cortes		
Ulises Rodriguez Rodriguez	900	600

Respecto al tipo de pasturas que manejan lo productores se conoció que un alto porcentaje de las fincas están sembradas con pastos mejorados en su mayoría Brachiaria, sin embargo algunos todavía manejan pasturas naturales en sus potreros, las razones de sus so tienen que ver más con la cultura del productor y su apego a las especies de mayor conocimiento por parte de ellos, en el cuadro 11 se presenta las especies para cada una de las fincas

Cuadro 11. Tipo de pasto que posee su potrero

Finca	Tipo de Pastos		
Álvaro Quesada	Trasvala, Angleton Enano, Camerún, Caña de Azúcar,		
Hernandez	Trasvara, Angleton Enano, Camerun, Cana de Azucar,		
Modesto Bolaños Bolaños	Estrella, Angliton y Natural		
Margarita Gonzales	Brachiaria brizanta y Brachiaria decumbens		
Sancho	Bracinaria orizanta y Bracinaria decamociis		
Miguel Francisco	Brachiaria, brizanta y Brachiaria decumbens		
Paniagua	Bracinaria, orizanta y Bracinaria decumbens		
José León Vargas Quesada	Brachiaria brizanta, Brachiaria decumbens, Tanzania y		
Jose Leon Vargas Quesada	Jaragua		
Carlos Mejía Rodríguez	Brachiaria brizanta, Tanzania		
Daniel Espinoza Espinoza	Mulato, Brachiaria brizanta, Toledo, Brachiaria decumbes,		
Daniel Espinoza Espinoza	Tanzania, Jaragua		
Daniel Castro Díaz	Brachiaria brizanta, Brachiaria decumbes, suazo, trasvala		
Rafael Ángel Guevara Matarrita	Anglinton, Brachiarai brizanta, Mulato, Toledo, Alfalfa, Caña		
Jairo Quirós Castro	Estrella Africana		
	Alfalfa, Camerún, Caña azúcar, Brachiaria brizanta,		
Isaías Alvares Ramírez	Tanzania, Mulato		
Marino Jiménez Muñoz	Brachiaria brizanta, Toledo, Mombasa, Estrella, Guinea		
Juvenal Sánchez Chávez	Brizanta, Anglinton		
Arnulfo Rodríguez	Deironto Tongonio Monalfolfo		
González	Brizanta, Tanzania, Maralfalfa		
Leonidas Villegas Cortes	Anglinton		
Ulises Rodriguez	Duiganta y Talada		
Rodriguez Brizanta y Toledo			

Se observó que los productores tienen interés sobre el uso de los arboles en sus fincas y obtienen múltiples beneficios de ellos, entre los que se cuenta la sombra, madera, protección de fuentes de agua, alimento para el ganado, madera, protección contra el viento etc. El principal uso del suelo donde prefieren los arboles es en pasturas, por otro lado hay productores que también establecen cercas vivas multiestratos con diferentes especies de árboles, como se observa en el cuadro 12.

Cuadro 12. Arboles en potreros y sus usos

Finca	Especies	Uso	Uso de la tierra
Álvaro Quesada		Madera y	Pastura, Cerca
Hernández	Guanacaste, Jocote, Papaturro	sombra	Viva
	Guanacaste, Genízaro, Cedro		Cerca viva
Modesto Bolaños Bolaños	Amargo, Roble, Sandal,	Protección y	
	Espabel	sombra	
Margarita Gonzales		Madera y	Pastura
Sancho	Guanacaste, Pochote, Gallinazo	sombra	
Miguel Francisco		Madera y	Pastura
Paniagua	Gallinazo, Laurel, Espabel	sombra	
José León Vargas		Sombra y	Pastura
José León Vargas Quesada	roble sabana, cortes negro,	suplemento	
Quesaua	guayaba, guácimo, mango	animal	
Carlos Mejía Rodríguez	guanacaste, tempisque	Sombra	Pastura
Daniel Espinoza Espinoza		Protección y	Pastura
Daniel Espinoza Espinoza	madero negro y guácimo	sombra	
	carboncillo, laurel, guanacaste,		Pastura
Daniel Castro Díaz	genizaro, sandal, guapinol,		
Daniel Castro Diaz	nance, saino, mora, quebracho,	Protección y	
	gavilán	postes	
Rafael Ángel Guevara	carao, roble, guayaquil,	Madera y	Pastura
Matarrita	terciopelo, guácimo	sombra	
Jairo Quirós Castro		Madera y	Pastura
Jano Qunos Castro	Laurel	sombra	
	Laurel, jinocuabe, guácimo,		Pastura
Isaías Alvares Ramírez	higuerón, mango, nance, cocos,	Madera,	
	marañón, aguacate, tamarindo	sombra, frutas	
	Cenízaro, guachipelin, cedro,		Pastura
Marino Jiménez Muñoz	jiñocuabe, guácimo, madero	Madera, cerca	
negro, níspero, laurel		viva y sombra	
Juvenal Sánchez Chávez		Madera y	Pastura
	Guanacaste, Cedro, Higuerón	sombra	
Arnulfo Rodríguez	Guácimo, Cocobolo,	Sombra y	Pastura
González	Guanacaste, Laurel	madera	

Finca	Especies	Uso	Uso de la tierra
Leonidas Villegas Cortes	Guácimo, Pochote, Sandal,	Sombra y	Pastura
Leonidas vinegas Cortes	papaturro	madera	
	Pochote , Cedro, Guanacaste,	Sombra,	Pastura
	Cenizaro, Laurel, Melina	madera y	
Ulises Rodriguez		protección	
Rodriguez	Jiñocuabo	Semillero	Cerca viva
	Laurel		
	Pochote, Guanacaste	Sombra	

Dada la importancia del tema del cambio climático y su impacto en las fincas ganaderas de la Región Chorotega, se quiso conocer acerca de la percepción que tienen los productores sobre los impactos en la época de verano especialmente y sobre las acciones que implementan como estrategia de adaptación, llama la atención que ninguna finca demostró que implementa estrategias de tipo sostenible para prepararse para estas época de menara preventiva, más bien se comprobó que las fincas aumentan sus costos de producción, toda la vez que privilegian la compra de alimento, insumos para suplementación etc., en lugar de la siembra de fuentes de alimento, protección de fuentes de agua etc. en el cuadro 13 se muestra la información por finca

Cuadro 13. Adaptación al cambio climático

Finca	Principales Impactos del cambio climático	Acciones que toma	
Álvaro Quesada	Pérdida de peso de los animales	Compra insumos	
Hernández			
	Pérdida de peso de los animales,	Compra insumos	
Modesto Bolaños Bolaños	Disminución en la producción de		
	leche		
Margarita Gonzales	Pérdida de peso de los animales	Compra suplementos	
Sancho			
Miguel Francisco	Pérdida de peso de los animales	Compra suplementos	
Paniagua			
José León Vargas	Pérdida de peso de los animales	Venta de ganado	
Quesada			
Carlos Mejía Rodríguez	Pérdida de peso de los animales	Compra de insumos	
Daniel Eggineza Eggineza	Pérdida de peso de los animales,	Venta de ganado	
Daniel Espinoza Espinoza	Disminución en el precio de la carne		
Daniel Castro Díaz	Pérdida de peso de los animales,	Venta de ganado,	
Daniel Casul Diaz	Disminución en el precio de la leche	Comprar insumos,	

Finca	Principales Impactos del cambio climático	Acciones que toma	
		Rentar pastos en otras	
		fincas	
Rafael Ángel Guevara	Disminución en la producción de	Comprar insumos	
Matarrita	leche, Disminución en el precio de la		
Wiataiiita	carne		
Jairo Quirós Castro	Pérdida de peso de los animales,	Comprar insumos	
Jano Quitos Castro	Disminución en el precio de la leche		
Isaías Alvares Ramírez	Pérdida de peso de los animales	Ninguna	
Marino Jiménez Muñoz	Pérdida de peso de los animales	Ninguna	
Juvenal Sánchez Chávez	Pérdida de peso de los animales	Compra insumos	
Arnulfo Rodríguez	Pérdida de peso de los animales,	Compra de insumos	
González	Disminución en la producción de		
Gonzalez	leche		
Leonidas Villegas Cortes	Pérdida de peso de los animales,	Compra de insumos	
Leonidas vinegas Cortes	Muerte de los animales		
	Pérdida de peso de los animales,	Venta de ganado,	
Ulises Rodriguez	Disminución en la producción de	Compra de insumos	
Rodriguez	leche, Disminución en el precio de la		
	carne		

Compra de Insumos: se refiere a compra de suplementos alimenticios: Y cuando se quiso saber acerca de la suplementación en las fincas, se encontró que en las fincas suplementan mayormente en la época de verano, utilizan diferentes fuentes alimenticias así como concentrados (miel y sal principalmente). Entre otras fuentes se encuentran mayormente caña de azúcar, la maralfalfa, la semolina, maíz, pacas de heno, cáscara de naranja etc. (Cuadro 14).

Cuadro 14. Suplementación animal

Finca Categoría Animal		Épo	oca	
		Época de Seca	Época de Lluvia	
Álvaro Quesada Hernández	Todos los animales	Caña de azúcar		
Modesto Bolaños Bolaños	Todos los animales	Concentrado, miel, sal y minerales	Miel y sal mineral	
Margarita Gonzales Sancho	Todos los animales	Semolina, concentrado y miel	Concentrado y sal	
Miguel Francisco Paniagua				
José León Vargas Quesada	Vacas paridas	Afrecho, semolina, destilado de maíz, sal mineral, miel y vitaminas	Sal, miel y vitaminas	
	Todos los animales	Sal, miel y vitaminas	Sal, miel y vitaminas	
Carlos Mejía Rodríguez	Novillos entre 1 y 2 años	Caña de azúcar, cratylia, maralfalfa, destilado de maíz, semolina, y sal mineral	Caña de azúcar, cratylia, destilado de maíz, semolina y sal mineral	
Daniel Espinoza Espinoza	Todos los animales	Miel, sal y citropulpa	Miel, sal	
Daniel Castro Díaz	Todos los animales	Miel y sal		
Rafael Ángel Guevara Matarrita	Vacas paridas	Concentrado, Sal, Camerún y caña de azúcar	Miel, sal, Camerún y caña	
	Vacas paridas	Concentrado	Concentrado	
Jairo Quirós Castro	Terneras	Miel, sal, silos de maíz y silo de maralfalfa		
Isaías Alvares Ramírez	Vacas paridas	Silo de Camerún y silo de heno		
	Vacas secas	Silo de camerún y silo de heno		
	Caballos	Concentrado y heno	Concentrado y heno	

Finca	Catagorío Animal	Época		
Finca	Categoría Animal	Época de Seca	Época de Lluvia	
Marino Jiménez Muñoz	Novillos>2 años	Se dedica a engorde con base a pastoreo		
Juvenal Sánchez Chávez	Novillos	Sal y miel Sal y miel		
Arnulfo Rodríguez González	Vacas paridas	Concentrado, maralfalfa y sal mineral	Concentrado	
	Vacas secas	Sal mineral y miel	Sal mineral y miel	
Leonidas Villegas Cortes	Novillos>2 años	Gallinaza, heno y semolina, Miel, Sal		
Ulises Rodriguez Rodriguez	Todo los animales	Miel, gallinaza y sal Miel, gallinaza y sal		

Para que los productores tengan una verdadera adaptación a los efectos del cambio climático es indispensable que se adopten tecnologías Silvopastoriles y se implementen buenas prácticas de manejo, de estas dos consideración depende el éxito de una estrategia de adaptación al cambio climático, sin embargo cuando se consultó acerca de la disposición de los residuos orgánicos en este caso excretas y se encontró que solo tres de los productores realizan algún tipo de manejo, como se observa en el cuadro 15, el manejo consiste es apilar las excretas y dejar fermentar por algunos días para luego disponerlas en las pasturas. Se considera que esta ausencia de manejo de excretas podría aumentar la emisión de gases en las fincas donde no se realiza ningún tipo de tratamiento

Cuadro 15. Manejo de residuos

Finca	Tipo de Manejo del estiércol
Álvaro Quesada Hernández	Pilas
Modesto Bolaños Bolaños	Sin manejo, en las praderas
Margarita Gonzales Sancho	Sin manejo, en las praderas
Miguel Francisco Paniagua	Pilas
José León Vargas Quesada	Sin manejo, en las praderas
Carlos Mejía Rodríguez	Pilas
Daniel Espinoza Espinoza	Sin manejo en las praderas
Daniel Castro Díaz	Sin manejo en las praderas
Rafael Ángel Guevara Matarrita	Sin manejo en las praderas
Jairo Quirós Castro	Sin manejo en las praderas
Isaías Alvares Ramírez	Sin manejo en las praderas
Marino Jiménez Muñoz	Sin manejo en las praderas
Juvenal Sánchez Chávez	Sin manejo en las praderas
Arnulfo Rodríguez González	Sin manejo en las praderas
Leonidas Villegas Cortes	Sin manejo en las praderas
Ulises Rodriguez Rodriguez	Sin manejo en las praderas

También se quiso conocer sobre la disponibilidad del recurso hídrico en las fincas y si había alguna protección de estas fuentes, especialmente protección para evitar que el ganado tome directamente el agua de las fuentes o si se implementan algunas acciones para proteger las fuentes. Ver cuadro 16

Cuadro 16. Fuentes de agua

Finca	Fuente de Ague	Fuente de Agua Posee		dad de agua	Donde consume agua el
riica	ruente de Agua	protección	Verano	Invierno	ganado
Álvaro Quesada Hernández	Pozos, Bebederos	No	Moderada	Moderada	Pozo, Bebedero
Modesto Bolaños Bolaños	Rio, Bebedero	No	Nada	Abundante	Rio, Quebrada, Pozo
Margarita Gonzales Sancho	Quebrada, Pozo	Si	Abundante	Abundante	Quebrada, Pozo
Miguel Francisco Paniagua	Naciente, Rio, Quebrada	Si	Abundante	Abundante	Naciente, Rio, Quebrada
José León Vargas Quesada	Naciente, Quebrada	Si	Abundante	Abundante	Naciente, Quebrada
Carlos Mejía Rodríguez	Rios, Quebradas	Si	Abundante	Abundante	Rio, Quebrada
Daniel Espinoza Espinoza	Rios, Quebradas, Cañería	Si	Abundante	Abundante	Rio, Quebrada
Daniel Castro Díaz	Rios, Quebradas, Cañería	Si	Abundante	Abundante	Quebrada, Pozo, Cañería
Rafael Ángel Guevara Matarrita	Naciente, Quebrada, Pozo	Si	Abundante	Abundante	Quebrada, Pozo
Jairo Quirós Castro	Naciente, Rios, Quebradas,	Si	Abundante	Abundante	Cañería
Jano Quiros Castro	Cañería				
Isaías Alvares Ramírez	Rios, Pozo, Cañeria	Si	Abundante	Abundante	Pozo, Cañería
Marino Jiménez Muñoz	Naciente, Quebrada, Pozo	Si	Abundante	Abundante	Naciente, Quebrada,
Marino Jinienez Munoz					Pozo
Juvenal Sánchez Chávez	Quebrada, Pozo	Si	Abundante	Abundante	Rio, Pozo
Arnulfo Rodríguez González	Naciente, Quebrada	Si	Abundante	Abundante	Naciente, Quebrada
Leonidas Villegas Cortes	Quebrada	Si	Abundante	Abundante	Quebrada
Illicas Dodriguaz Dodriguaz	Naciente, Rios, Pozo,	No	Abundante	Abundante	Rio, Bebedero
Ulises Rodriguez Rodriguez	Bebederos				

3.2.5. Usos de la tierra de las fincas

Con el propósito de completar la información de las fincas, se ubicaron imágenes satelitales de 10 fincas, de 4 no se encontraron imágenes. Estas imágenes son claves para conocer el área de las fincas y ubicar al equipo de campo al momento de visitar las fincas, ya que previamente puede identificarse los usos del suelo prioritarios para la realización de las calicatas para la obtención de las muestra de suelo y caracterización vegetal. Los principales usos del suelo fueron las área de bosque, plantaciones forestales, pasturas con baja y alta densidad de árboles, bancos forrajeros de leguminosas y leñosas, bosque ripario, cercas vivas, chárrales y otros cultivos etc. En el Anexo 8, se desatacan los mapas de cada una de la finca. En el cuadro 17 se observa la información de tenencia de la tierra y el área

Cuadro 17. Tenencia del predio

Finca	Tipo de tenencia	Área (ha)
Álvaro Quesada Hernández	Propia con plano	22,00
Modesto Bolaños Bolaños	Propia con plano	38,77
Margarita Gonzales Sancho	Propia con plano	53,55
Miguel Francisco Paniagua	Propia con plano	60,71
José León Vargas Quesada	Propia con plano	27,78
Carlos Mejía Rodríguez	Propia con plano	68,73
Daniel Espinoza Espinoza	Propia con plano	135,77
Daniel Castro Díaz	Propia con plano	38,51
Rafael Ángel Guevara Matarrita	Propia con plano	25,18
Jairo Quiroz	Propia con plano	20,03
Isaias Alvares Murillon	Propia con plano	34,07
Marino Jiménez Muñoz	Propia con plano	18,00
Juvenal Sánchez Chávez	Propia con plano	71,82
Arnulfo Rodríguez González	Propia con plano	29,76
Leonidas Villegas Cortes	Propia con plano	10,00
Ulises Rodriguez Rodriguez	Propia con escritura y plano	22,42

3.2.6. Levantamiento de los usos del suelo a nivel de fincas

Mediante el uso de GPS y con ayuda de las imágenes satelitales, se tomaron en 13 fincas los puntos de cada uso del suelo, no se tomaron en tres fincas: Álvaro Quesada, al momento de realizar las visita de campo se encontraba con una situación de fuego en su finca no puso atender al equipo, la finca del sr Leonidas Villegas fue vendida y al Sr Marino Rodriguez, no podía estar en la finca y no tenía a quien dejar). En las fincas donde se trabajo, además de comprobar el área total, se indago sobre la pendiente, la edad de la pastura, estado etc. para ellos se utilizaron formatos de trabajo de campo.

3.2.7. Elaboración de mapas

Con la información del trabajo de campo y con uso del programa ArcView se graficaron los puntos y se obtuvieron los mapas de cada uno de las fincas y las respectivas áreas por usos del suelo. En el Anexo 8 se presentan los mapas

Posteriormente y también utilizando imágenes satelitales, se ubicaron las fincas en la Región Chorotega, con la finalidad de analizar su distribución espacial en el territorio, para verificar que su distribución es representativa en toda la Región, como se indica en el Figura 1.

UBICACION FINCAS SELECCIONADAS 330,000 11 330000 UPALA COSTARICA LIBERIA BAGACES CARRILL TILARAN **LEYENDA** REGION CHOFOTEGA ANTA CRUZ REGION HUETAR NORTE NICOYA ID PRODUCTOR Area (ha) 1 Arnulfo Rodriguez 29.767 Carlos Mejia 68 795 Daniel Castro 38 514 NANDAYURE 4 Daniel Espinoza 135.767 5 Isaias Alvarez 34.075 6 Jairo Quiroz 20.038 Jose Leon Vargas 91.386 Juvenal Sanchez 71,820 9 Margarita Gonzales 53,553 330000 300,000 420000 450000 480000 510000 10 Miguel Paniagua 60.714 11 Modesto Bola±os 37,799 12 Rafael Guevara 25,187 120 Kilometers 13 Ulises Rodriguez 22,422

Figura 1. Mapa de Ubicación de las fincas muestreadas en la Región Chorotega, Costa Rica.

3.2.8. CONCLUSIONES

La información para caracterización de fincas se tomo por medio de encuestas, se realizaron tres en total: i) para obtener información relacionada con la actividad ganadera como tal, ii) información útil para el cálculo de emisiones de gases efecto invernadero y iii) información relacionada con la provisión de servicios ambientales en la Región Chorotega. Adicionalmente se tomaron coordenadas geográficas de cada uno de los usos de la tierra de las fincas seleccionadas

El uso de Sistemas de Información Geográfica resulta de gran utilidad para confrontar la información tomada en campo y la información de las imágenes satelitales, pero mucho más eficiente es la metodología que trabajar directamente con el productor verificando los mapas de su finca y para esta labor se puede apoyar en el uso de planos catastrados, fotos etc.

Los mapas de uso del suelo de cada finca, le sirven al productor para planificar sus actividades futuras y tomar decisiones sobre la forma de implementar buenas prácticas ganaderas y sistemas Silvopastoriles para tener una mayor productividad y rentabilidad en la finca, así como para saber qué cambios hacer para mejorar su indicadores económicos y reducir la emisión de gases efecto invernadero y aumentar la remoción de carbono, con la siembra o cuidado de arboles ya existentes en el campo.

3.2.9. BIBLIOGRAFÍA

- Arias R. 2007. Alternativas de producción ganadera amigable con el medio ambiente (en línea). engormix.com. Consultado 26 mar. 2009. Disponible en http://www.engormix.com/alternativas_produccion_ganadera_amigables_s_articulos 1747 AGR.htm
- Cámara de Ganaderos de Hojancha. 2005. Programa de Ganadería Sostenible. Hojancha, Costa Rica. Consultado 23 Ene, 2010. Disponible en http://www.mag.go.cr/bibliotecavirtual
- Cárdenas, G. C. Harvey, M. Ibrahim, y B. Finegan. 2003. "Diversidad y riqueza de aves en diferentes hábitats en un paisaje fragmentado en Cañas, Costa Rica." Agroforestería en las Américas, **10**(39-40), pp.78-85.
- Comisión mixta de sequía, 2003. Plan estratégico. Región Chorotega. Consultado 23 ene, 2010. Disponible en http://www.cne.go.cr/CEDO-CRID/CED
- CORFOGA (Corporación Ganadera). 2004. Historia de la Ganadería en Costa Rica. Consultado 23 Ene, 2010. Disponible en www.corfoga.org Disponible en http://www.asturiasverde.com/2008/enero/01079greenpeace-agricultura.htm
- MAG (MINISTERIO DE AGRICULTURA Y GANADERÍA), 2007. Plan Estratégico para el desarrollo de la agrocadena de la ganadería bovina de carne en la Región Chorotega. Consultado 23 Ene, 2010. Disponible en http://www.mag.go.cr/bibliotecavirtual/a00056.pdf
- Pérez G. E. 2001. Censo Bovino Nacional. Revista CORFOGA. San José, Costa Rica. Consultado 23 Ene, 2010. Disponible en www.corfoga.org

4. CAPITULO 2: Almacenamiento de carbono en el suelo y biomasa arbórea en usos de la tierra en paisajes ganaderos de la región de Guanacaste

4.1. Resumen

Costa Rica ha venido fortaleciendo sus compromisos internacionales a nivel ambiental, como ha sido la reducción de gases de efecto invernadero, a través de la Convención de Cambio Climático, lo que ha permitido generar una conciencia ambiental y perspectivas para afrontar el cambio climático, el país ha tomado un reto que solamente lo ha tomado los países en desarrollos, de llegar a ser país neutral de emisiones al 2021, para cumplir con esta meta es indispensable conocer la potencialidad de almacenamiento de carbono y remoción de CO2 en los diferentes usos de la tierra presentes en fincas ganaderas. Se estimó el almacenamiento de carbono del suelo y de la biomasa arbórea arriba del suelo en seis usos de la tierra en fincas representativas de la Región de Chorotega. Los usos de la tierra seleccionados fueron: 1. bosques secundarios, 2. bancos forrajeros de gramíneas, 3. bancos forrajeros de leñosas, 4. plantaciones forestales, 5. pastura mejorada con árboles y 6 pastura degradada. Para estimar el carbono almacenado, se tomaron muestras de suelo para estimar el carbono total y la densidad aparente mediante el análisis de laboratorio. El carbono en la biomasa se estimó estableciendo parcelas temporales donde se midió el diámetro a la altura del pecho de todos los árboles y mediante ecuaciones alométricas se calculó la biomasa. Los bosques secundarios fue el uso de la tierra en el cual se encontró el mayor stock de carbono 178,7 tn C, seguido de las plantaciones forestales 142,4 tn C, pasturas mejoradas de alta densidad de árboles 107,1 tn C y los valores más bajos se reportaron en las pasturas degradadas 60,2 tn C. El mayor aporte al stock de carbono es realizado por el suelo, mientras que en las plantaciones forestales y bosques el biomasa arbórea aportan entre el 40 -50% del total de carbono almacenado. Esto evidencia que el manejo de pasturas bajo sistemas silvopastoriles presenta una potencialidad para el flujo de carbono y con buenas prácticas de manejo contribuyen a la remoción de CO2 atmosférico, siendo una estrategia complementaria para el almacenamiento de carbono y protección de los remanentes de bosque y manejo sostenible de las plantaciones forestales que son los usos de la tierra con los valores más altos de carbono almacenado en la región.

4.2. Introducción

El crecimiento de la población humana y las malas prácticas de manejo de los usos de la tierra como la ganadería extensiva, han ocasionado un impacto ambiental (MEA 2003). Especialmente, en las perdida de la cobertura de bosque, principalmente por la expansión de la frontera agropecuaria y la presión que reciben los bosques remanentes, ha incentivado el cambio de tecnologías y sistemas de producción amigables con el ambiente, que incremente la productividad de las fincas e incentiven la conservación de la cobertura arbórea en agropaisajes como es la implementación de sistemas agroforestales y silvopastoriles.

Diferentes estudios han mencionado que los sistemas silvopastoriles pueden contribuir a la conservación de la diversidad, debido a que pueden servir como corredores biológicos para

la fauna y flora silvestre (Beer *et al.* 2003), incrementan la conectividad estructural de los paisajes, fomentan la cobertura arbórea en áreas de pasturas y permiten que estás áreas sean menos contrastantes con los fragmentos de bosque (Chacón & Harvey 2008), también proveen servicios ambientales conservación de la biodiversidad (Guevara *et al.* 1998; 2005, Estrada & Coates-Estrada 2002, 2005; Pagiola *et al.* 2004), contribuye a la regulación del clima mediante el secuestro de Carbono (Andrade e Ibrahim 2003) y disminuir la erosión de suelo, mejorando así la calidad del servicio hídrico (Ríos *et al.* 2007).

Por lo anterior, los sistemas silvopastoriles parecen ser una una alternativa que contribuye a la disminución las tasas de liberación de CO₂, ocasionadas por los diferentes factores de las actividades antropicas. Donde el secuestro de Carbono en un ecosistema depende de dos factores: (1) el área total de ecosistema, y del Numero de árboles por unidad de área. Los sistemas silvopastoriles con un buen manejo apropiado pueden ser sumideros de Carbono (Cuadro 18). Asimismo, la cantidad de Carbono acumulada en el suelo aumenta en los sistemas agroforestales (Kanninen 1997). Esto está influenciado por el cambio en biomasa en bosques y plantaciones, la conversión de bosques a pasturas y el manejo que pueden influir en el contenido de carbono en el suelo.

Cuadro 18. Alternativas para el secuestro de Carbono

Opción	Densidad de Carbono	Secuestro (Corto plazo)	Costo de C
Reducir deforestación y protección de bosques	Alta	Bajo	Bajo
Reforestación	Moderada	Alto	Moderado
Silvicultura	Alta	Moderado	Bajo
Agroforestería y Silvopastoriles	Baja	Moderado	Moderado
Plantaciones de Madera para Leña	Moderada	Alto	Alto
Productos Forestales	Baja	Bajo	Bajo

Estudios realizados en el Pacifico Central de Costa Rica, apreciaron que el almacenamiento de carbono por los sistemas silvopastoriles (Pasturas con arboles dispersos y bancos forrajeros), pueden ayudar almacenar entre 70 a 127 tn C ha⁻¹, donde el establecimiento y manejo apropiado de las pasturas mejoradas y árboles en los potreros, tienen un alto potencial para el secuestro de carbono, con una planificación apropiada de la finca para establecer áreas para regeneración natural y plantaciones (Ibrahim et al. 2007). Del mismo modos se debe tener en cuenta que el almacenamiento de carbono es temporal por lo que su valoración debe solamente tomando en cuenta la duración de este. Dada la temporalidad del secuestro, solamente retrasa los impactos del cambio climático a los esfuerzos por reducción de emisiones. El objetivo del presente estudio fue determinar la cantidad de biomasa aérea y carbono total almacenado en las diferentes fuentes de almacenamiento

4.3. Metodología

Los sistemas forestales y agroforestales acumulan carbono en cuatro componentes: biomasa sobre el suelo, hojarasca, sistemas radiculares y carbono orgánico del suelo (Snowdon et al. 2001).

Sin embargo para el presente estudio se consideraron para evaluar el carbono en dos de los cuatro componentes por tres razones:

- 1. Por el tiempo tan corto que se tenia en la consultoría
- 2. Se seleccionaron los componentes de los usos de la tierra evaluados, en los que el almacenamiento de Carbono tiene presenta una mayor permanencia como es el componente arbóreo y el suelo a 30 cm de profundidad, ya que en esta profundidad se puede monitorear la fijación de carbono generada por el uso de la tiera presente en la parcela de monitoreo (IPCC 1996).
- 3. Los datos de pasturas se analizaron mediante informacion de otros estudios realizados aledaños a la región y se modelaron basados en las condiciones microclimaticas de la región para modelarlos bajo CO2fix.

4.3.1. Almacenamiento de Carbono de la biomasa arriba del suelo

En los sistemas forestales y silvopastoriles los principales depósitos de carbono son: la biomasa sobre el suelo, la biomasa bajo el suelo, los detritus, la madera muerta y el carbono orgánico del suelo (GPG-LUTCUTS, 2006) y el mayor porcentaje de carbono almacenado se presenta en la biomasa sobre el suelo presente en usos del suelo como árboles, arbustos, palmas y herbáceas, ellos determinan el carbono sobre el suelo en los árboles y en la vegetación herbácea presentes en las fincas ganaderas. En las seis fincas se tomaran diferentes usos de la tierra y en ellos medirán los incrementos en la acumulación de carbono, en la figura 2 se describe el proceso.

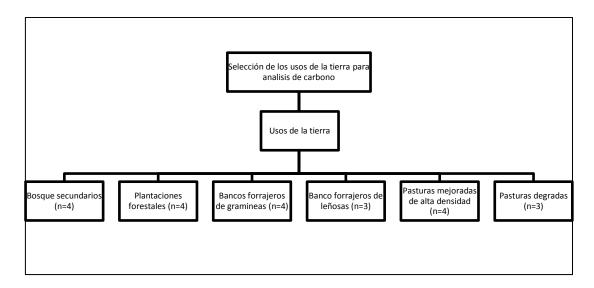
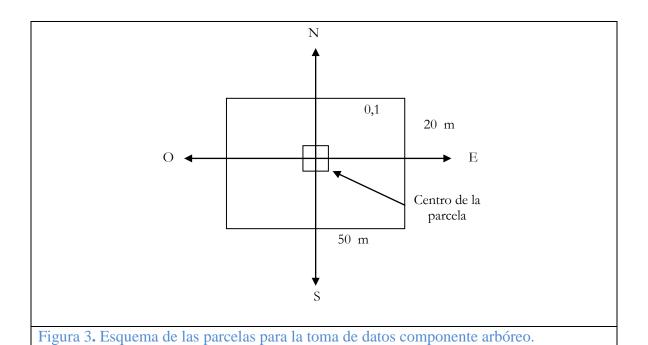
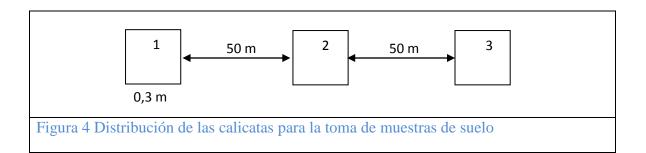



Figura 2. Usos de la tierra seleccionados para el inventario y estimación de la fijación de carbono en la región de Chorotega, Costa Rica.

Para la selección de los sitios de muestreo se seleccionaron a partir usos de la tierra dominantes en las 16 fincas ganaderas seleccionadas para este estudio. Para cada uso de la tierra se seleccionaran cuatro parcelas y se tomaran las siguientes variables: A) Historia de uso de la tierra (edad, años de pastoreo, usos anteriores de la tierra) B) Tipo de suelo (Deslizamiento, degradación), C) Manejo de la carga animal, D) Manejo de fertilización, E) Manejo ante el fuego y F) Vegetación (Cobertura arbórea con dap ≥ 10 cm.

Para la caracterización arbórea se realizaron parcelas rectangulares de 20 m x 50 m (Figura 3), en las cuales se midieron las variables: diámetro a la altura del pecho (1,30 cm), altura total de la vegetación leñosa a los individuos con dap > 10 cm y la especie, sí se registra una palma únicamente se registra su altura (Cuadro 19). Se determinó la abundancia relativa, área basal y la frecuencia de individuos por especie para cada uno de los seis usos de la tierra. Se calculó también el índice de valor de importancia (IVI) (Curtis y McIntosh 1950) para determinar las especies más representativas por cada uno de los diferentes usos de la tierra. Este índice está dado por: IVI especie X =A%a + D%a + F%a, donde A%a es la abundancia relativa de la especie a, D%a es la dominancia relativa de la especie a y F%a es la frecuencia relativa de la especie a. El IVI da valores en un rango de entre 0 y 100.

Cuadro 19. Formato para la caracterización vegetal.


Tratamiento:		Propietario de la finca:				
		Código de la finca:				
No. Repetición	n:	Fecha:				
		Coordenadas geo	ográficas:			
# Parcela	Especie	No. individuo	Dap	Altura	observaciones	

4.3.2. Toma de datos de suelos

1. Establecimiento de calicatas

Para determinar la fijación de carbono en los usos de la tierra a evaluar, se establecieron tres calicatas por repetición en cada una de las repeticiones. Tres calicatas con dimensiones

de 30x30x30 cm (0,3 m³). Cada calicata fue numerada del 1 al 3 según se muestra en la figura 4. La distancia entre los límites de cada uso de la tierra y el establecimiento de las calicatas fue de cincuenta metros con el fin minimizar el ruido en los datos con efecto de borde.

2. Toma de muestras de suelo

Una vez establecidas las calicatas se procedió a la toma de muestras de suelo para densidad aparente y para los respectivos análisis químicos. Para la toma de las muestras todas las muestras de suelo fueron tomadas a 30 cm de profundidad.

De cada una de las calicatas y de cada una de las diferentes caras y a 30 cm de profundidad, se tomaron muestras de suelo. Estas muestras de suelos fueron guardadas en bolsas plásticas, y bien rotuladas con una etiqueta, donde se indicó el uso de la tierra que representa, el # de repetición, nombre del dueño de la finca y el tipo de análisis a efectuar.

3. Toma de muestras para densidad aparente

En cada calicata se tomó una muestra de suelo en cilindros metálicos para densidad aparente. Estas muestras fueron tomadas en la cara norte de cada calicata, tomándose tres muestras por cada uso de la tierra, para un total de 12 muestras en cuatro repeticiones.

El cálculo para determinar la densidad aparente es: Da = Ms/v total, donde la división entre la masa del suelo seco (Ms) y el volumen del cilindro (v total) corresponde a la densidad aparente (g/cm3) del suelo. El volumen del cilindro se calcula con la siguiente formula $v = \pi x r 2xh$, donde r es igual al radio y h a la altura.

4. Toma de muestras de suelo para análisis químicos

Para determinar el carbono total, las muestras de suelo fueron obtenidas mezclando el suelo proveniente de tres de las cuatro caras de la calicata. Este suelo se obtiene raspando las paredes de cada cara con unaespátula. Una vez obtenidas todas las muestras según el proceso descrito anteriormente, se procedió a enviar las muestras de suelo para el análisis de laboratorio.

5. Análisis de laboratorio

Para evaluar la *densidad aparente*, las muestras del suelo obtenidas mediante el cilindro fueron secadas por 24 horas a 105°C en estufa y para realizar el análisis de *carbono total* se realizó por combustión en equipo autoanalizador Thermofinigan, los cuales fueron realizados en el laboratorio de suelo del CATIE, los resultados de estos análisis se presentean en el **Anexo 4**

4.3.3. Cálculo de carbono en la biomasa aérea

Para el cálculo de carbono se necesita estimar la biomasa aérea, para ello se implementará una ecuación alométrica que haya sido desarrollada en condiciones climáticas y edáficas similares a las del sitio de estudio, que las especies de los árboles para las ecuaciones estén presentes en el área de estudio, que los rangos de dap y altura que fueron usados en el desarrollo de las ecuaciones hayan sido similares a los árboles individuales en el área de estudio, para este estudio se tomaran en cuenta las ecuaciones alométrica propuestas en GOOD PRACTICE FOR LAND USE CHANGE AND FORESTRY (GPG-LULUF 2006) y por el IPCC, 2006. El cuadro 3, muestra un resumen de algunas ecuaciones alométricas generales para distintos usos de la tierra, estos son algunos ejemplos, pero en la literatura se encontraran muchas otras ecuaciones adaptadas a diferentes sitios con diferentes zonas climáticas.

Cuadro 20.Formato para toma de datos de DAP y altura en el componente arbóreo en pasturas

Especies	Ecuación	Descripción	Fuente	
Bosques tropicales 900- 1500 mm	ln Y=-2.00+2.32*ln(dap)	lnY= Logaritmo neperaino de la biomasa total (Kg de materia seca). dap= Diámetro a la altura del pecho (cm).		
Bosques secundarios	Log ₁₀ Y= - 4.4661+2.707log ₁₀ dap			
Para árboles en potrero en Centroamérica	$0.08012(dap)-0.0006244(dap^2)$ (t ha ⁻¹ de materia seca).		Ruiz 2002	
Plantaciones forestales (teca)	$Log_{10} Y = 0.815 + 2.382log_{10}dap$	Y= Logaritmo base 10 de la biomasa total (Kg de materia seca). dap= Diámetro a la altura del pecho (cm).	Pérez y Kanninen 2003	
Palmas	Y = 4.5 + 7.7 * H	Y: kilogramos de biomasa H: altura en metros Árboles en potreros	Frangi y Lugo 1985	
Coníferas	Y=exp(-1.170+2.119*ln(dap)	Y= Logaritmo neperaino de la biomasa total (Kg de materia seca). dap= Diámetro a la altura del pecho (cm).	Brown et al. 1997	

Las estimaciones de la cantidad de carbono almacenado en diversos usos de la tierra como bosques secundarios y plantaciones forestales por lo general asumen un valor de 50 % para la fracción de carbono en materia seca en todas las especies (Brown et al. 1997). Las normas establecidas por el IPCC para realizar estimaciones de contenido de carbono en diferentes escenarios naturales, recomiendan utilizar el mínimo valor de 0,5 en caso que no haya datos disponibles.

4.3.4. Modelación de Carbono

Se calculó el contenido de carbono para la biomasa y suelos en cada uso de la tierra mediante el software CO2Fix. El modelo de fijación de carbono CO2FIX permite estimar el C en usos de la tierra diferentes a áreas forestales como son los sistemas silvopastoriles y agroforestales. Esta modelación es realizada bajo el concepto de *rodal*. El rodal es un grupo de árboles o un grupo de especies de crecimiento similar, que se tratan como una unidad (Alder y Silva 2000).

a) Parámetros para la entrada de datos a los modelos de biomasa

Para las entradas de los modelos se utilizaron datos recopilados en campo, datos provenientes de revisión bibliográfica que permitieron ayudar a establecer los parámetros de carbono en la biomasa, suelo y humus del suelo, así como datos para estimar la tasas de crecimiento como el incremento corriente anual (ICA), diámetros y altura de vegetación similar a la que iba a ser modelada en este estudio. Los parámetros generales del modelo se presentan en el Cuadro 21.

Se consideraron con un solo rodal los modelos de bosques secundarios, plantación de Teca, pasturas mejoradas sin árboles, y pasturas degradadas. Se decidió utilizar este modelo debido a la carencia de información de datos de crecimiento de especies de bosques tropicales, y para evitar sesgos e inconsistencias por falta de información en cada rodal. Los modelos de pasturas mejoradas con árboles se tomaron en cuenta tres rodales: pasturas, árboles de crecimiento lento y de árboles de crecimiento rápido.

Para cada *rodal* se simulo su crecimiento de la biomasa mediante el software SILVIA (CATIE 2001) para construir en el módulo de Simulación perfiles de crecimiento del conjunto de especies en cada cohorte, luego se empleó una ecuación alométrica de la base de datos que tiene este software para el diámetro y la altura (Cuadro 5), con estas ecuaciones se pudo estimar el volumen y la biomasa de los árboles en pasturas.

Los modelos de pasturas naturales y los de pasturas mejoradas con árboles se construyeron con tres cohortes cada uno. Estos fueron: pasturas, árboles de crecimiento lento y de árboles de crecimiento rápido. En los cohortes de los árboles fue necesario simular su crecimiento para estimar la biomasa en el sistema, para este fin se utilizó el software SILVIA (CATIE 2001).

Los *rodales de árboles de crecimiento lento* fueron el conjunto de especies de lento crecimientos, de copa ancha, altura mayor de 30 m, puede alcanzar diámetros > 100 cm, y son comunes en las pasturas como *Guazuma ulmifolia* (Guácimo), *Enterolobium cyclocarpum* (Guanacaste), *Samanea saman* (Cenizaro), entre otras. Se consideró un diámetro (DAP) máximo de 100 cm y altura (H) máxima de 30 m. Las ecuaciones genéricas seleccionadas fueron, para altura: 30*EXP(-2.2*EXP(-0,049*H) y para diámetro: 100*EXP(-2,5*EXP(-0,05*DAP) (Zamora 2007).

Los *rodales de árboles de crecimiento rápido* fueron el conjunto de especies de rápido a mediano crecimiento, de fuste recto, copa pequeña, altura menor de 30 m, con 60 cm de

diámetro máximo, y abundantes en las pasturas como *Cordia alliodora* (laurel), *Cedrela odorata* (Cedro Amargo), *Schizolobium parahyba* (Gallinazo), entre otras. Se consideró el diámetro (DAP) máximo de 60 cm y altura (H) máxima de 25 m. Las ecuaciones fueron para diámetro: 60*EXP (-3.9*EXP (-0,11*DAP) y altura: 25*EXP(-2*EXP(-0,08*H) (Zamora 2007).

Para la elaboración de los modelos se generaron basados con algunos supuestos en las condiciones del clima, la vegetación y el suelo, estos criterios fueron basados en la metodología propuesta por Zamora 2007:

- 1. Las condiciones climáticas se consideraron constantes.
- 2. La mortalidad natural se consideró constante en la biomasa.
- 3. El crecimiento se tomó como una función de la edad en cada uso de la tierra.
- 4. La competencia entre los rodales no se consideró debido a la falta de información o estudios en este aspecto.
- 5. El crecimiento de la biomasa en follaje, ramas y raíces se consideró como una función de la biomasa del fuste (una proporción del fuste).
- 6. La tasa de descomposición de la materia soluble en el suelo se consideró constante en el suelo de cada uso de la tierra.
- 7. La temperatura sensitiva de descomposición de la materia orgánica constante en el suelo de cada uso de la tierra.

Cuadro 21. Parámetros utilizados para la creación de los modelos de almacenamiento de carbono en biomasa en los cinco modelos

Escenario	Años de simulación	Máxima biomasa en el sistema (Mg/ha)	Tasa de crecimiento en función de	Competencia en función	Mortalidad depende de:	Aprovecha- miento forestal
Bosque secundario	200	300	Edad	Biomasas total	Volumen cosechado	
Plantación forestal	50	400	Edad	Biomasas total	Volumen cosechado	25 años
Pastura mejorada de alta densidad de arboles	25	40	Edad	Rodal	Cosecha del rodal	Extracción de arboles cada 5 y 15 años
Pastura mejorada debaja densidad de arboles	25	40	Edad	Rodal	Cosecha del rodal	Extracción de arboles cada 5 y 15 años
Pastura mejorada sin arboles	25	40	Edad	Biomasas total	Volumen cosechado	NA
Pastura degradada	25	30	Edad	Biomasas total	Volumen cosechado	NA

b) Parámetros para la entrada de datos a los modelos de suelo

Para modelar el flujo y almacenamiento de carbono en el suelo, el software CO2fix emplea los datos de precipitación (pp) y de temperatura (°C) para calcular automáticamente la tasa de evapotranspiración, para lo cual se utilizaron los datos meteorológicos promedio de los últimos 10 años, de la estación meterologica en Liberia, los cuales se encuentran disponibles en línea (http://clima.meteored.com/clima-en-liberia-787740.html).

En la región de Chorotega se presentan seis meses de época lluviosa (mayo a noviembre). La sumatoria de los grados diarios de temperatura por anual fue >10000°, la evapotranspiración (EVT) en la época húmeda fue 1154.3mm. La sumatoria de la precipitación en la época húmeda fue 1037.9mm. La precipitación promedio fue 87 mm/mes. Estos valores se utilizaron para la creación de los modelos de carbono en el suelo (Cuadro 22).

Cuadro 22. Datos de temperatura y Precipitación promedio para la región de Chorotega durante 1999-2009. Estación meteorológica de Liberia, Costa Rica

Meses	Promedio de la Temperatura (°C)	Promedio de la Precipitación total de lluvia (mm.)
Enero	29,2	0,9
Febrero	30,0	0,9
Marzo	31,0	2,4

Meses	Promedio de la Temperatura (°C)	Promedio de la Precipitación total de lluvia (mm.)		
Abril	31,6	10,8		
Mayo	29,9	93,4		
Junio	28,3	132,6		
Julio	28,4	101,1		
Agosto	28,3	125,2		
Septiembre	27,2	272,5		
Octubre	27,1	230,5		
Noviembre	27,7	61,7		
Diciembre	28,6	14,9		

El CO2fix para el modelo de suelo utiliza el modelo Yasso (Liski *et al.* 2003) que describe la descomposición y la dinámica del C en suelos bien drenados. Por ahora, el software contempla las existencias totales de C en el suelo, sin hacer distinción entre los distintos horizontes del mismo. Los parámetros para modelar el carbono en el suelo se tomaron en cuenta los valores de las condiciones climáticas y los valores de iniciales en los contenido de carbono en el suelo. A partir de esta información el programa calcula las proporciones de compuestos solubles, holocelulosas y compuestos de lignina que contienen los distintos tipos de residuos (no leñosos, de madera fina y de madera gruesa), para árboles frondosos (Cuadro 23). Los resultados en este estudio se presentaron a una escala de tiempo de 0 a 25 años para los modelos de pasturas, de 0 a 50 años para plantaciones forestales y bosques secundarios.

Cuadro 23. Parámetros utilizados para la estimación del carbono almacenado en el suelo y en biomasa

Escenario	Rodal	Fuste	Follaje	Ramas	Raíces	Densidad de madera	Motalidad	Remoción de biomasa
Bosque secundario		2,45	1	0	3,2	0,5	0,05	Autoclareo
Plantación forestal		2	2,96	0,5	0,5	0,5	0,01	20% tercer año 30% año 10 50% 15 20% año 20 100% año 25
Pastura degradada		0,1	1,5	0,5	2,2	1	0,5	98% ocasionada por el sobrepastoreo

Escenario	Rodal	Fuste	Follaje	Ramas	Raíces	Densidad de madera	Motalidad	Remoción de biomasa
Pastura mejorada sin arboles		0,1	3	0,01	3,2	1	0,01	50% con buen manejo de la pastura y rotación de las misma.
	Pastura	0,1	3	0,01	3,2	1	0,01	50% con buen manejo de la pastura y rotación de las misma.
Pastura mejorada	Arboles de lento crecimiento	0,5	0,1	0,1	0,5	0,5	0,01	20% de remoción de biomasas cada 15 años
de alta densidad de arboles	Arboles de rápido crecimiento	1,23	0,1	0,1	0,5	0,5	0,01	10 % remoción de biomasas cada 15 años Manejo de la regeneración natural, selección de árboles para la pastura.
Pastura mejorada de baja densidad de arboles	Pastura	0,1	3	0,01	3,2	1	0,01	50% con buen manejo de la pastura y rotación de las misma.
	Arboles de lento crecimiento	0,5	0,1	0,1	0,5	0,5	0,01	Remoción de biomasas cada 15 años
	Arboles de rápido crecimiento	1,23	0,1	0,1	1	0,5	0,01	Remoción de biomasas cada 5 años

Datos tomados por diferentes fuentes bibliográficas.

4.4. Resultados

4.4.1. Descripción de los usos de la tierra

Los usos de la tierra evaluados presentaron pendientes en su mayoría moderadas y en buen estado de conservación y manejo. La edad de establecimiento de cada uno de los cambios de uso es variable y fueron desde los 2 años como es el caso de un banco forrajero hasta más de 25 años en los bosques, los cuales pueden ser considerados bosques secundarios recientes (Cuadro 24).

El promedio de edad de los seis usos de la tierra evaluados se aprecian en el Cuadro 25. En cuanto al uso de la quema no se pudo preguntar por cada área utilizada para el establecimiento, sin embargo en la encuesta realizada 80% realiza quemas para el establecimiento de pasturas.

Cuadro 24. Características física y de manejo de distintos usos de la tierra en Esparza, Costa Rica.

No.	Nombre del productor	Código	Edad del uso de la tierra	Pendiente	Estado	Área
1	Álvaro Quesada	BF Gramíneas	2	Buena	Baja	0,154
2	Álvaro Quesada	BF Leñosas	9	Buena	Baja	0,135
3	Carlos Mejía	BF Gramíneas	10	Baja	Bueno	0,493
4	Daniel Espinoza	BF Gramíneas	4	Baja	Bueno	2,563
5	Miguel Paniagua	BF Gramíneas	5	Baja	Bueno	0,204
6	Modesto Bolaños	BF Gramíneas	8	Baja	Bueno	0,245
7	Ulises Rodríguez	BF Gramíneas	5	Baja	Bueno	0,266
8	Carlos Mejía	BF Leñosas	8	Baja	Bueno	0,108
9	Isaías Álvarez	BF Leñosas	1	Baja	Bueno	0,182
10	Ulises Rodríguez	BF Leñosas	2	Baja	Bueno	0,245
11	Miguel Paniagua	B. Secundario	25	Moderado	Bueno	5,571
12	José León	B. Secundario	22	Moderado	Bueno	4,441
13	Ulises Rodríguez	B. Secundario	24	Moderado	Bueno	0,810
14	Modesto Bolaños	B. Secundario	22	Alto	Bueno	6,506
15	Daniel Castro	B. Secundario	25	Alto	Bueno	12,48
16	Miguel Paniagua	Pastura degradada	10	Baja	Degradado	1,306
17	José León	Pastura degradada	5	Alta	Degradado	11,103
18	Daniel Espinoza	Pastura degradada	6	Baja	Degradado	6,553
19	Carlos Mejía	Plantaciones Forestal	3	Baja	Bueno	3,512
20	Ulises Rodríguez	Plantaciones Forestal	16	Baja	Bueno	1,654
21	Daniel Espinoza	Plantaciones Forestal	10	Moderada	Regular	1,46
22	Isaías Álvarez Murillo	P. mejorada con arboles	6	Moderada	Bueno	2,990
23	Jairo Quiroz	P. mejorada con arboles	6	Moderado	Bueno	6,606
24	José León	P. mejorada con arboles	4	Baja	Bueno	2,976
25	Ulises Rodríguez	P. mejorada con arboles	2	Moderado	Bueno	1,932

Cuadro 25. Valores promedio, error estándar y los valores máximos y mínimos del tiempo de establecimiento de los seis usos de la tierra evaluados en la Región de Chorotega, 2010.

Usos de la tierra	Años	Mínimos	Máximos
Pastura Mejorada con árboles	$4,5 \pm 0,5$	2	6
Banco Forrajero de Leñosas	$5 \pm 1,07$	1	9
Banco Forrajero de Gramíneas	$5,67 \pm 0,64$	2	10
Pastura degrada	$7 \pm 0,76$	5	10
Plantaciones forestales	$9,67 \pm 1,88$	3	16
Bosque secundarios	$23,6 \pm 0,36$	22	25

4.4.2. Composición arbórea a nivel de territorio

Se registraron un total de 458 individuos pertenecientes a 43 especies arbóreas (Anexo 5). Según el índice de valor de importancia en la región especies que fueron dominantes en la región fueron especies de uso maderable y son especies dispersadas por el viento o introducidas bajo plantaciones como la Teca y Melina (Cuadro 26).

Cuadro 26. Índice de valor de importancia (IVI) de las 10 especies arbóreas presentes en las fincas ganaderas evaluadas en la región de Chorotega.

Especie	Abundancia	Área basal	Frecuencia	IVI
Tectona grandis (Teca)	38,32	14,33	1,72	18,13
Guazuma ulmifolia (Guacimo)	8,20	11,96	5,17	8,44
Cordia alliodora (Laurel)	7,58	8,47	5,17	7,07
Cedrela odorata (Cedro Amargo)	5,94	9,73	5,17	6,95
Gmelina Arborea (Melina)	12,30	6,29	1,72	6,77
Ardisia revoluta (Tucuico)	2,46	6,65	5,17	4,76
Schizolobium parahyba (Gallinazo)	2,66	5,43	5,17	4,42
Ceiba pentandra (Ceiba)	0,82	7,89	1,72	3,48
Anacardiun excelsum (Espavel)	2,05	6,34	1,72	3,37
Andira inermis (Almendro de montaña)	1,23	1,95	5,17	2,79
Otras especies	18,44	20,95	62,07	33,82
Total	100,00	100,00	100,00	100,00

Basados en el estado de conservación de los especies arbóreas se registro una especies amenazada *Swietenia macrophylla* (Caoba) y cuatro especies introducidas principalmente para uso maderable, El resto de especies registradas fueron especies dominantes y comunes de la región del pacifico norte de Costa Rica (Figura 5).

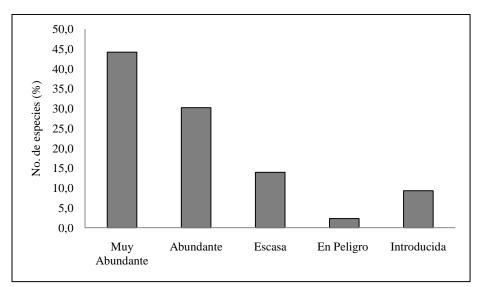


Figura 5. Distribución de las especies arbóreas basada en el estado de conservación registrada en la caracterización vegetal de las fincas ganaderas de la región de Chorotega 2010.

La mayoría de las especies tienen usos maderables (postes, madera de aserrío) y leña; otras en menor proporción como forrajeras y consumo humano (Figura 6). El uso maderable de las especies arbóreas, es uno de los principales criterios que consideran los productores en la toma de decisiones sobre la selección y retención de árboles en potrero (Villanueva *et al.* 2003, 2007; Muñoz *et al.* 2003).

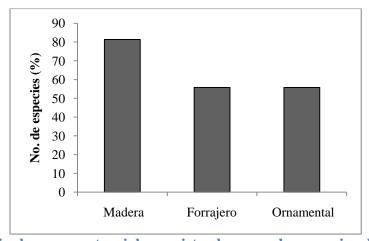


Figura 6. Principales usos potenciales registrados para las especies de árboles en las fincas ganaderas en la Región de Chorotega, basado en Jiménez *et al.* 2002

4.4.3. Comparación de la diversidad arbórea entre usos de la tierra.

Los usos de la tierra que registraron el mayor número de especies fueron los bosques secundarios, seguido de las pasturas y el menor fue registrado en las plantaciones forestales. El número de individuos fue mayor en las plantaciones forestales, seguido de los bosques secundarios y el menor número sé registro en las pasturas. Las áreas de bosque registraron la mayor heterogeneidad de especies y el valor más bajo fue registrado en las plantaciones forestales, basados en el índice de diversidad de Pielou, las áreas de bosque son los usos de la tierra más diverso seguido de las pasturas con arboladas (Cuadro 27)

Cuadro 27. Número de individuos y especies totales y promedio por los usos de la tierra evaluados en las fincas ganaderas en la Región de Chorotega 2010. Letras distintas entre filas representan diferencias significativa p<0,005, prueba de LSD Ficher.

Uso de la tierra	Bosque secundario	Pasturas mejoradas con árboles	Plantaciones forestales
Abundancia total	173	51	247
No. De especies totales	36	11	2
No. De especies promedio	$13,4 \pm 0,71$ c	$5 \pm 0.37 \text{ b}$	2 ± 0 a
Abundancia promedio	$34,6 \pm 1,54$ b	$12,75 \pm 1,14$ a	$82,33 \pm 5,6 \text{ c}$
Pielou	$0,68 \pm 0,01$ c	0.76 ± 0.01 b	1 ± 0 a

4.4.4. Estructura arbórea

En los cuatro usos de la tierra donde se evaluó la composición arbórea dap > 10 cm, no se presentaron diferencias significativas en la altura promedio de los árboles. El DAP fue menor en las plantaciones forestales y mayor en las áreas de pasturas degradadas (Cuadro 28), ya que en los potreros seleccionados se presentaron especies arbóreas como *Ardisia revoluta*, *Guazuma ulmifolia*, con DAP > 100 cm, los cuales son utilizados por el ganado como sombra en los potreros.

Cuadro 28. Altura Total y Diámetro a la altura el pecho (DAP) de los usos evaluados

Uso de la tierra	Plantaciones forestales	Bosque secundario	Pasturas mejoradas con árboles
Altura total	$13,31 \pm 1,27$ a	$11,65 \pm 0,38$ a	$12,45 \pm 0,77$ a
DAP	15.8 ± 1.24 a	$25,08 \pm 1,4 \text{ b}$	$28,42 \pm 0,82 \text{ b}$

4.4.5. Composición arbórea entre usos de la tierra

Bosques secundarios

Se registraron un total de 173 individuos pertenecientes a 36 especies arbóreas (Anexo 5). Según el índice de valor de importancia las especies mas dominantes fueron el *Guazuma ulmifolia* (guácimo), *Anacardiun excelsum* (espavel), *Ceiba pentandra* (ceiba) y *Cedrela odorata* (cedro), otras especies se aprecian en el cuadro 29.

Cuadro 29. Indice de valor de importancia (IVI) de las 10 especies arbóreas presentes en los bosques secundarios en la región de Chorotega, 2010.

Especie	Abundanci	Área	Frecuenci	IVI
Especie	a	Basal	a	
Guazuma ulmifolia (Guacimo)	19,65	12,89	2,78	11,77
Anacardiun excelsum (Espavel)	5,78	12,99	2,78	7,18
Ceiba pentandra (Ceiba)	2,31	16,16	2,78	7,08
Cedrela odorata (Cedro Amargo)	6,94	8,31	2,78	6,01
Cordia alliodora (Laurel)	9,25	5,15	2,78	5,73
Enterolobium cyclocarpum				
(Guanacaste)	1,16	9,57	2,78	4,50
Ardisia revoluta (Tucuico)	5,78	2,60	2,78	3,72
Cecropia peltata (Guarumo)	5,20	1,38	2,78	3,12
Anona sp (Anonillo)	4,05	1,91	2,78	2,91
Cassia grandis (Carao)	1,73	4,11	2,78	2,87
Otras especies	38,15	24,94	72,22	45,10
Total	100,00	100,00	100,00	100,00

La especie *Guazuma ulmifolia* (guácimo), presenta la característica que sus frutos son muy apetecidos por varias especies de animales silvestres (mamíferos y aves) y por el ganado. Por lo que tiene un gran mecanismo de dispersión que le ayudan a ser una de las principales especies que se encontraron dentro del uso de la tierra de bosque secundario, las otras especies abundantes en los bosque como el laurel y el cedro son dispersadas por el viento, lo que estos mecanismos de dispersión favorecen la conservación de estas especies en la región.

4.4.6. Pasturas

Las pasturas mejoradas con alta densidad de árboles reportaron 11 especies y 51 individuos y en las pasturas degradas se registraron 9 especies y 17 individuos. Las especies más importantes fueron *Schizolobium parahyba* (Gallinazo), *Cedrela odorata* (Cedro

Amargo), *Guazuma ulmifolia* (Guacimo), *Cordia alliodora* (Laurel) (Cuadro 30) El dominio estas especies en las áreas de pasturas, evidencia la preferencia de los productores por mantener especies maderable como su principal uso que le dan los productores en la región.

Cuadro 30. Índice de valor de importancia (IVI) de las especies arbóreas presentes en las pasturas evaluadas en la región de Chorotega, 2010.

	Pasturas	s mejorada	as con árboles	Pasturas degradadas				
Especie	Abundancia	Área basal	Frecuencia	IVI	Abundancia	Área basal	Frecuencia	IVI
Cordia alliodora (Laurel)	39,22	40,49	9,09	29,60	5,88	0,47	11,11	5,82
Cedrela odorata (Cedro Amargo)	27,45	35,83	9,09	24,13	17,65	2,96	11,11	10,57
Guazuma ulmifolia (Guacimo)	7,84	10,16	9,09	9,03	11,76	26,10	11,11	16,33
Schizolobium parahyba (Gallinazo)	11,76	3,55	9,09	8,14	35,29	19,87	11,11	22,09
Andira inermis (Almendro de montaña)	1,96	2,11	9,09	4,39	5,88	5,61	11,11	7,53
Ricinus communis (Higuerilla)	1,96	2,00	9,09	4,35				
Acrocomia aculeata (Coyol)	1,96	1,93	9,09	4,33				
Tabebuia ochracea (Cortez Amarillo)	1,96	1,45	9,09	4,17				
Pseudosamanea guachapele (Guayaquil)	1,96	1,17	9,09	4,07	5,88	7,05	11,11	8,01
Ardisia revoluta (Tucuico)	1,96	1,03	9,09	4,03	5,88	32,62	11,11	16,54
Annona muricata (Guanabana)	1,96	0,27	9,09	3,78				
Sapranthus palanga (Palanco)					5,88	0,78	11,11	5,92
Samanea saman (Cenizaro)					5,88	4,54	11,11	7,18
Total	100	100	100	100	100	100	100	100

4.4.7. Plantaciones Forestales

En las plantaciones forestales de teca y melina no se encontraron otras especies arbóreas formando parte de la estructura florística de estos usos de la tierra en la región.

4.4.8. Carbono de suelo (30 cm de profundidad)

El carbono total del suelo en los diferentes usos de la tierra presentó diferencias significativas (p=0,0383). Los bosques secundarios, plantaciones forestales y los bancos forrajeros de gramíneas (caña) poseen una mayor cantidad de carbono almacenado en el suelo, seguido de las pasturas mejoradas y los bancos forrajeros de leñosas (*Cratylia*), y el uso de tierra que registro los valores más bajo fue las pasturas degradas (Figura 7). Estos resultados presentan un patrón similar al reportado en la zona cafetera en Colombia y en Esparza, Costa Rica (Ibrahim et al. 2007).

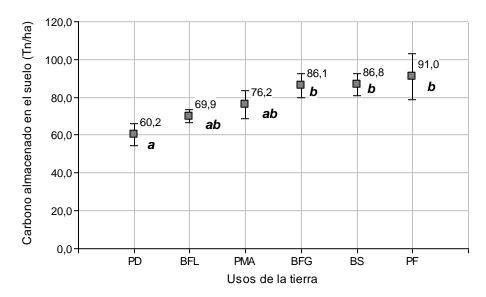


Figura 7. Carbono total del suelo a 30 cm de profundidad en distintos usos de la tierra en la región de Chorotega, Costa Rica. 2010. BS: bosque secundarios, BFG: banco forrajero de gramíneas, BFL: banco forrajero de leñosas, PF: plantaciones forestales, PMA: pastura mejorada con árboles y PD: pastura degradada. Letras diferentes indican diferencias significativas según prueba de LSD Fisher $P \le 0.05$. Las barras indican el error estándar.

4.4.9. Depósito de Carbono en biomasa arbórea con dap > 10 cm

El carbono en la biomasa áerea en los distintos usos de la tierra presentó diferencias significativas (p< 0,0001). Los bosques secundarios evaluados presentaron los valores más altos de carbono, seguido de las plantaciones forestales, y los valores más bajos se registraron en los bancos forrajeros de leñosas y en pasturas degradadas (Figura 8). Esto se puede deber a que en las áreas de bosque se presentaron individuos con dap > 80 cm, que han facilitado el almacenamiento de Carbono en la biomasa arbórea. Los valores bajos de los bancos forrajeros de gramíneas se puede deber al manejo que realizan es estos usos de la tierra ya que estos los cortan al menso 2 veces al año, seguido de las pasturas degradada que por el manejo son los usos de la tierra con el menor valor.

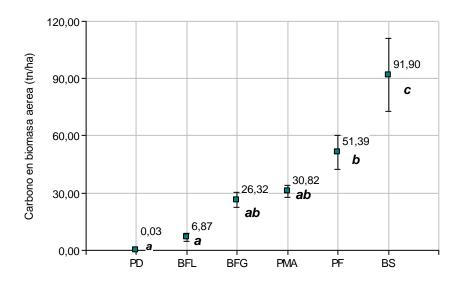


Figura 8. Carbono en biomasa arbórea en seis usos de la tierra en la región de Chorotega, Costa Rica. 2010. BS: bosque secundarios, BFG: banco forrajero de gramíneas, BFL: banco forrajero de leñosas, PF: plantaciones forestales, PMA: pastura mejorada con árboles y PD: pastura degradada. Letras diferentes indican diferencias significativas según prueba de LSD Fisher $P \le 0,05$. Las barras indican el error estándar.

4.4.10. Carbono total

Región de Chorotega, en los seis usos de la tierra evaluados se presentaron diferencias significativas en el total de carbono almacenado (p <0,0001). Los bosques secundarios fue el uso de la tierra que más carbono almaceno, seguido de las plantaciones forestales y los valores más bajos se reportaron en las bancos forrajeros y en las pasturas degradadas (Figura 9), resultados similares fueron registrados en un estudio de carbono en Esparza (Ibrahim et al. 2007). En la Figura 10 se aprecia la proporción al almacenamiento de carbono en los usos de la tierra evaluados, apreciando que el mayor aporte lo realiza el suelo en el sistema en los diferentes usos.

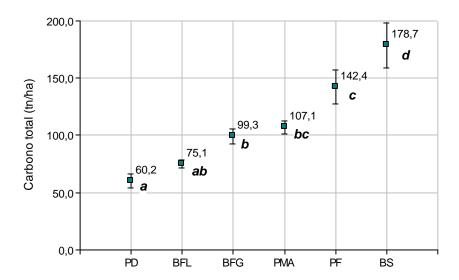


Figura 9. Carbono Total en seis usos de la tierra en la región de Chorotega, Costa Rica. 2010. BS: bosque secundarios, BFG: banco forrajero de gramíneas, BFL: banco forrajero de leñosas, PF: plantaciones forestales, PMA: pastura mejorada con árboles y PD: pastura degradada. Letras diferentes indican diferencias significativas según prueba de LSD Fisher P≤0,05. Las barras indican el error estándar.

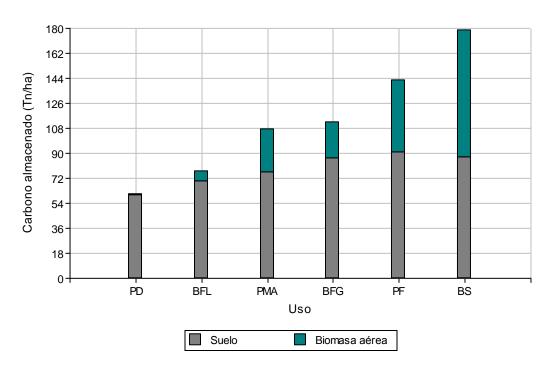


Figura 10. Comparación del aporte al almacenamiento de Carbono en los dos componentes evaluados en los seis usos de la tierra evaluados en la región de Chorotega, 2010. BS: bosque secundarios, BFG: banco forrajero de gramíneas, BFL: banco forrajero de leñosas, PF: plantaciones forestales, PMA: pastura mejorada con árboles y PD: pastura degradada.

4.4.11. Modelación de carbono

Al modelar el secuestro de carbono con CO₂Fix, apreció que las pasturas degradadas (PD) es el uso de la tierra que secuestra la menor cantidad de carbono anualmente en la biomasa de 0,14 Mg C/ha/año. Se estimó que en un plazo de 25 años, una pastura degradada sin árboles puede liberar entre 6 – 8 Mg C/ha, lo que puede ser ocasionada por mal manejo de la pastura y el sobrepastoreo (Figura11).

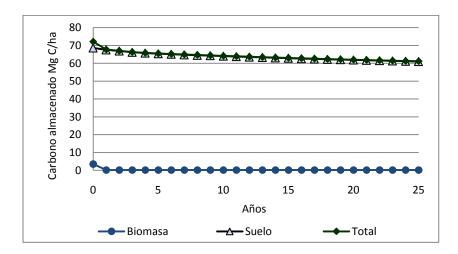
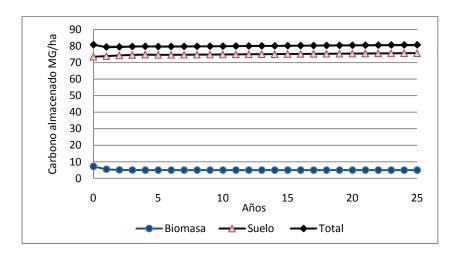



Figura 11. Modelación potencial del carbono almacenado en pasturas degradadas en la región de Chorotega.

En las pasturas mejoradas sin arboles evidenció que durane el período de modelación de 0 a 25 años, los valores de carbono total, en la biomasa arriba del suelo y suelo; el carbono almacenado es constane durante cada año (Figura 12). Según el modelo durante los 25 años, esta pasura puede pueden fijar un stock de carbono entre 1,31–1,8 Mg C/ha en el suelo.

Figura 12. Modelación potencial del carbono almacenado en pasturas mejoradas sin arboles en la región de Chorotega.

En las pasturas mejoradas con baja densidad de árboles, en la modelación del carbono almacenado en la biomasa aérea mostro un incremento de 0,21 Mg C/ha/año, esta tasa de fijación de carbono esta influenciada por la extracción de árboles para usos en la finca para el mantenimiento de infraestructuras en la finca como corrales, mangas entre otros (Figura 13). Durante los 25 años modelados, este tipo de sistema puede almacenar entre 2 - 4 Mg C/ha en el suelo y en la biomasa aérea puede almacenar entre 1,3-2,93 Mg C/ha.

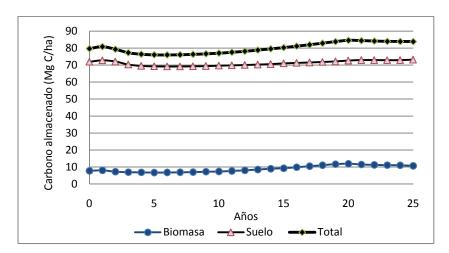
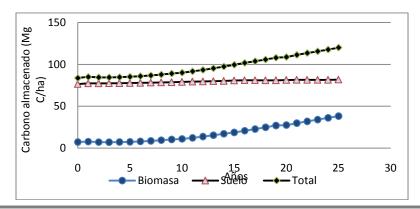



Figura 13. Modelación potencial del carbono almacenado en pasturas mejoradas con baja densidad de arboles en la región de Chorotega.

En las pasturas mejoradas con alta densidad de árboles, el contenido de carbono almacenado en los primeros años (0-6), la curva tuvo un comportamiento similar al observado en la pastura mejorada de baja densidad de árboles (Figura 13 y 14). A partir del séptimo año se empieza a incrementar el stock de carbono con tendencia creciente a medida que los árboles siguen creciendo, algunas oscilaciones que presenta la curva están relacionadas con el aprovechamiento de algunos árboles en las pasturas, que pueden ser utilizados para leña o madera. Durante los 25 años modelados, este tipo de sistema puede almacenar entre 25 - 39 Mg C/ha en la biomas aerea y en el suelo puede almacenar entre 4,01 – 5,4 Mg C/ha.

Figura 14. Modelación potencial del carbono almacenado en pasturas mejoradas con alta densidad de arboles en la región de Chorotega.

En las plantaciones de teca el almacenamiento de carbono fue dinámico, esto se puede atribuir al crecimiento y manejo de e la plantación forestal hasta su aprovechamiento (Figura 15). Con la remoción de biomasa mediante la poda y raleo que se realizan en el manejo de una plantación, lo que ocasiona un incremento brusco en la fijación de carbono en el suelo. Estos cambios abruptos que se realizan en la biomasa aérea ocasionada por el manejo forestal, esta puede ser contrarrestada por la fijación de carbono en el suelo (ciclaje de nutrientes de los residuos del aprovechamiento forestal como ramas hojas entre otras), comportamiento similar fueron encontrados por otros estudios realizados en Esparza (Zamora 2007) y plantaciones forestales en zonas templadas (Pérez et al. 2007).

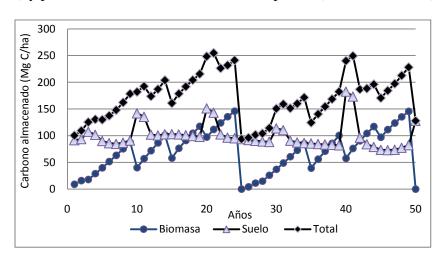


Figura 15. Modelación potencial del carbono almacenado en plantaciones forestales de teca en la región de Chorotega.

La modelación con el bosque, se realizo asumiendo que estas áreas son protegidas por los productores, evitando que el ganado no ingrese al bosque y que no se realizara ninguna actividad forestal mediante talas selectivas o aclareos durante un periodo de 200 años y se considero que en la dinámica natural de los bosque sucede los autoclareos. Los autoclareos representan pérdida de biomasa, como por ejemplo la caída de un árbol, que cuando cae puede dejar car otros árboles o ramas de otros árboles que se encuentran cercanos al árbol que se cae o muerto (Olguín et al 2003). Bajo esta premisa se puede incrementar los valores del stock de carbono en el suelo (Figura 16). Los resultados de la modelación apreciaron que entre los 40 a 50 años el incremento del almacenamiento de carbono aumenta paulatinamente, posteriormente la curva empieza a decrecer suavemente hasta los 100 años donde la curva se empieza a estabilizar, comportameinto similar ha sido apreciado en otras regiones como Olguin et al. (2003) y Zamora (2007) (Figura 16). Durante los 150 años modelados, el bosque en biomasa aerea puede almacenar entre 40-47 Mg C/ha en la biomas aerea y en el suelo puede almacenar entre 22 – 27 Mg C/ha durante todo el periodo de tiempo modelado.

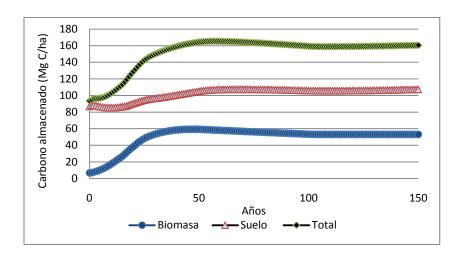


Figura 16. Modelación potencial del carbono almacenado en bosques secundariosen la región de Chorotega.

4.4.12. Potencial del almacenamiento de carbono en la región.

El stock de carbono total a nivel de paisaje, para las 13 fincas seleccionadas en el estudio es de 17.275,26 Toneladas de Carbono en las fincas evaludas (Cuadro 31), el mayor almacenamiento de carbono proviene de los remanentes de bosque seguido de las áreas de plantaciones forestales, en los cuales se almacena el 70% del total de carbono almacenado en las 13 fincas.

Cuadro 31. Estimación del Carbono en biomasa aerea almacenado en las 13 fincas seleccionadas para el presente estudio en le región de Chorotega.

			Carbono en biomasa aérea	
Usos de la tierra	Área (has)	%	Tn C/ha	Tn C/paisaje
Pastura Degradada*	9,6	1,2	0,03	0,29
Pastura Natural ADA	68,953	8,4	-	-
Pastura Natural BDA	70,646	8,6	-	-
Pastura Natural SA	27,681	3,4	-	-
Pastura Mejorada ADA	58,7	7,2	30,8	1807,16
Pastura Mejorada BDA*	266,9	32,6	11,66	3112,17
Pastura Mejorada SA*	12,0	1,5	4,97	59,79
Banco Forrajero Gramínea	13,0	1,6	26,3	341,29
Banco Forrajero Leñosa	0,8	0,1	6,9	5,82
Plantación Forestal	57,2	7,0	51,4	2940,23
Bosque Secundario	98,0	12,0	91,9	9008,49
Otros usos	136,3	16,6	-	-
Total	819,7	100	-	17275,26

^{*}Datos estimados a partir dela modelación de CO2fix

Las tasas de fijación estimadas mediante fueron obtenidas a partir de los datos de campo y lo modelos realizados son de gran utilidad para poder estimar la fijación de carbono los cuales fueron obtenidas a aprtir de lso datos obtenidos en campo y lo modelado en CO2Fix, los calculos de las tasas de fijación para los bosque fue de un rango de edad entre los 0 a 50 años de edad, donde se presentan la mayor tasa de fijación, posteriormente se reduce esta tasa de fijación, para los demas usos del suelo evaluados fueron estimadas entre 0-25 años.

En los usos de la tierra como bancos forrajeros de gramineas y leñosas, por ser sistemas de producción utilizados para la alimentación animal y su temporalidad no fueron considerados para la esimación de almacenamiento de Carbono en la región. En las fincas utilizadas para el presente estudio pueden estar fijando $892 \pm 61,01$ tn C/año, donde el 70% es fijado por las plantaciones forestales y remanentes de bosque, que tienen el 19% del total del área de las fincas, y un 27% del carbono fijado es pasturas con baja densidad, lo que equivale a $3271,6 \pm 223$ tn de CO2 /año removidas de la atmosfera (Cuadro 32). El stock de carbono se podria aumentar mediante el incremento la cobertura arborea en los sitemas de producción.

Cuadro 32. Estimación del total de Carbono fijado utilizado como linea base en las 13 fincas seleccionadas para el presente estudio en le región de Chorotega.

Usos de la tierra	Área (ha)	%	Tasa de fijación de carbono (Tn/ha/año)	Carbono almacenado (Tn C/año)	Remoción de CO ₂ (Tn CO ₂ /año)
Pastura Degradada*	9,6	1,2	-0,29	-2,8	-10,2
Pastura Natural ADA	68,9	8,4	-	-	-
Pastura Natural BDA	70,6	8,6	-	-	-
Pastura Natural SA	27,7	3,4	-	-	-
Pastura Mejorada ADA	58,7	7,2	1,34	78,7	288,4
Pastura Mejorada BDA*	266,9	32,6	0,91	242,9	890,6
Pastura Mejorada SA*	12,0	1,5	0,7	8,4	30,8
Banco Forrajero Gramínea	13,0	1,6	4,64	-	-
Banco Forrajero Leñosa	0,8	0,1	1,37	-	-
Plantacion Forestal	57,2	7	3,21	183,6	673,2
Bosque Secundario	98,0	12	3,89	381,2	1397,8
Otros usos	136,3	16,6	-	-	-
Total	819,7	100	-	892,0	3270,6

Al generar *escenearios "hipoteticos*" de los posibles cambios que los productores pueden realizar en este momento, el primero seria el cambio de las pasturas naturales a pasturas mejoradas, el carbono removido de la atmosfera se incrementa en un 21%, donde en al linea base se tiene $892 \pm 60,5$ tn C/año se pasa a 1032 tn C/año (Cuadro 33), se estaria removiendo alrededor de $3973 \pm 221,7$ tn $CO_2/año$.

Cuadro 33. Estimación del total de Carbono fijado utilizado bajo un escenario de solo cambiar las pasturas naturales a mejoradas en las 13 fincas seleccionadas para el presente estudio en le región de Chorotega.

Usos de la tierra	Área (ha)	%	Tasa de fijaciòn de carbono (Tn/ha/año)	Carbono almacenado (Tn C/año)	Remoción de CO2 (Tn CO ₂ /año)
Pastura Mejorada ADA	137,3	16,7	1,34	183,9	674,4
Pastura Mejorada BDA	337,5	41,2	0,91	307,2	1126,3
Pastura Mejorada SA	39,7	4,8	0,7	27,8	101,8
Banco Forrajero Gramínea	13,0	1,6	4,64		
Banco Forrajero Leñosa	0,8	0,1	1,37		
Plantacion Forestal	57,2	7,0	3,21	183,6	673,2
Bosque Secundario	98,0	12,0	3,89	381,2	1397,8
Otros usos	136,3	16,6	-		0,0
Total	819,7	100	-	1083,7	3973,5

El segundo escenario es el de incrementar la cobertura arborea en potreros, donde las pasturas de baja densidad de arboles se transforman a pasturas con alta densidad de arboles y las pasturas sin arboles se pasan a pasturas con baja densidad de arboles, el carbono anual fijado seria de 1237,2 \pm 129 tn C/año, el incremento del carbono fijado seria de un 39% con respecto a la linea base y se estaria removiendo 4536,3 \pm 323 tn CO₂/año. (Cuadro 34)

Cuadro 34. Estimación del total de Carbono fijado utilizado bajo un escenario de incremento de la cobertura arborea en las áreas de pasturas en las 13 fincas seleccionadas para el presente estudio en le región de Chorotega

Usos de la tierra	Área (ha)	%	Tasa de fijaciòn de carbono (Tn/ha/año)	Carbono almacenado (Tn C/año)	Remoción de CO ₂ (Tn CO ₂ /año)
Pastura Mejorada ADA	474,8	57,9	1,34	636,2	2332,9
Pastura Mejorada BDA	39,7	4,8	0,91	36,1	132,4
Pastura Mejorada SA	0,0	0,0	0,7	0,0	0,0
Banco Forrajero Gramínea	13,0	1,6	4,64		
Banco Forrajero Leñosa	0,8	0,1	1,37		
Plantacion Forestal	57,2	7,0	3,21	183,6	673,2
Bosque Secundario	98,0	12,0	3,89	381,2	1397,8
Otros usos	136,3	16,6	-		0,0
Total	819,7	100	-	1237,2	4536,3

^{*}Proporcion estimada con los datos de linea base (Cuadro 32)

El tercer escenario fue realizado fue realizado utilizando un incremento de las pasturas degradadas en un 60% del total de las áreas de pasturas, ocasionadas por el mal manejo de las pasturas, sobrepastoreo, periodos cortos de descanso de las pastura, el cual ha sido apreciado en Centro America (FAO 2008). Bajo estas condiciones el carbono anual fijado

seria de $606 \pm 65,7$ 100 tn carbono/año y se estaria removiendo 2222,8 \pm 247 tn de CO_2 /año. Al mismo tiempo se dejaria de fijar un 32% de lo que se tiene en la linea base y se estarian emitiendo alrededor de 330 tn CO_2 /año (Cuadro 35)

Cuadro 35. Estimación del total de Carbono fijado utilizado bajo un escenario del incremento en un 60% del total de pasturas degradadas en las 13 fincas seleccionadas para el presente estudio en le región de Chorotega.

Usos de la tierra	Área (ha)	%	Tasa de fijación de carbono (tn/ha/año)	Carbono almacenado (Tn C/año)	Remoción de CO ₂ (Tn CO ₂ /año)
Pastura Degradada*	312,4	1,2	-0,29	-90,6	-332,2
Pastura Natural ADA	27,6	8,4	-	-	-
Pastura Natural BDA	28,3	8,6	-		-
Pastura Natural SA	11,1	3,4	-	-	
Pastura Mejorada ADA	23,5	7,2	1,34	31,5	115,4
Pastura Mejorada BDA*	106,8	32,6	0,91	97,2	356,2
Pastura Mejorada SA*	4,8	1,5	0,7	3,4	12,3
Banco Forrajero Gramínea	13,0	1,6	4,64	-	-
Banco Forrajero Leñosa	0,8	0,1	1,37	-	-
Plantación Forestal	57,2	7	3,21	183,6	673,2
Bosque Secundario	98,0	12	3,89	381,2	1397,8
Otros usos	136,3	16,6	-	-	-
Total	819,7	100	-	606,2	2222,8

4.5. Conclusiones

Los bosques secundarios son los usos de la tierra con la mayor diversidad de especies en la región y son áreas importantes para la conservación de especies vía de extinción (Caoba). Las especies arbóreas que retienen los productores en las pasturas son de principalmente maderables y en menor proporción dejan especies para otro uso potencial.

El análisis de carbono total de suelo aprecio que las pasturas degradadas y los bancos forrajeros de leñosas fueron el uso de la tierra que presento los valores más bajo. Los bosques y plantaciones fueron los usos de la tierra que más aportaron para el almacenamiento de carbono en el suelo y en la biomasa.

Los resultados muestran que en la región de Chorotega, en las fincas ganaderas presenta un potencial para la captura y fijación de carbono, principalmente por la conservación de los remanentes de bosque y el manejo de árboles en las áreas de producción de las fincas, para el cual puede ser importante en la planificación de la finca, con el fin diversificar la producción agropecuaria y la generación de servicios ecosistemicos.

4.6. Bibliografía

- Aledr, D. and Silva, J.N. 2000. An empirical cohort model for management of Terra Firme forests in the Brazilian Amazon. Forest Ecology and Management 130: 141-157
- Andrade, H.J. y M. Ibrahim. 2003. Como monitorear el secuestro de carbono en los sistemas silvopastoriles. Agroforesteria de las Amèricas. Vol. 10:109-116-
- Arevalo, L.A., J.C, Alegre y C. Palm. 2003. Determinación de las reservas totales de carbono en los diferentes sustemas de uso de la tierra en Perú. CODESU- Peru.27 p.
- Beer, J., C.A. Harvey, M. Ibrahim, J.M. Harmand, E. Somarriba & F. Jimenez. 2003. Servicios ambientales de los sistemas agroforestales. Agroforestería Américas 10:80-87
- Brown, P; Cabarle, B; Livernash, R. 1997. Carbon counts: Estimating climate change mitigation in forestry projects. World Resources Institute, US. 25 p.
- Centro Agronómico Tropical de Investigación y Enseñanza. 2001. Silvia, Sistema de Manejo Forestal. Versión 2. Copyright CATIE 2000-2004.
- Chacón-L, M. & C.A. Harvey. 2008. Contribuciones de las cercas vivas a la estructura y la conectividad de un paisaje fragmentado en Río Frío, Costa Rica, p. 225-250. In C.A. Harvey & J.C. Sáenz (Eds). Evaluación y conservación de biodiversidad en paisajes fragmentados de Mesoamérica. Instituto Nacional de Biodiversidad INBIO. Santo Domingo de Heredia, Costa Rica.
- Curtis, JT; McIntosh, RP. 1950. The integration of certain analytic and synthetic phytosociological characters. Ecology 31:434-455.
- Estrada, A. & R. Coates-Estrada. 2002. Dung beetles in continuous forest, forest fragments and in an agricultural mosaic habitat island at Los Tuxtlas, Mexico. Biodivers. Conserv. 11: 1903-1918.
- Estrada, A. & R. Coates-Estrada. 2005. Diversity of Neotropical migratory land bird species assemblages in forest fragments and man-made vegetation in Los Tuxtlas, Mexico. Biodivers. Conserv. 14: 1719-1734.
- FAO (Organización de las Naciones Unidas para la agricultura y la alimentación, IT). 2008. Conclusiones y recomendaciones de la X Reunión de la comisión de desarrollo ganadero para América Latina y el Caribe (en línea). Consultado el 17 enero de 2010. Disponible en: http://www.rlc.fao.org/es/comisiones/codegalac/pdf/medbras.pdf

- Ferreira, CM. 2001. Almacenamiento de carbono en bosques secundarios en el municipio de San Carlos, Nicaragua. Tesis Mag. Sc. Turrialba, Costa Rica. CATIE. 100 p.
- Frangi, JL; Lugo, AE. 1985. Ecosystem dynamics of a subtropical floodplain forest. Ecological Monographs 55:351-369.
- Guevara, S., J. Laborde & G. Sánchez. 1998. Are isolatedremnant trees in pastures a fragmented canopy? Selbyana 19: 34-43.
- Guevara, S., J. Laborde & G. Sánchez-Ríos. 2005. Los árboles que la selva dejó atrás. Interciencia 30: 595-601.
- Ibrahim, M. Chacón, M. Cuartas, C. Naranjo, C. Ponce, G. Vega, P., Casasola, F. 2007. Almacenamiento de carbono en el suelo y la biomasa arbórea en sistemas de usos de la tierra en paisajes ganaderos de Colombia, Costa Rica y Nicaragua. Revista Agroforesteria de las Americas. 45: 27-36.
- IPCC, 2003.Good Practice Guidance for Land Use, Land-Use Change and Forestry, Chapter 4 Supplementary methods and good practice guidance arising from the Kyoto Protocol, Section 4.2.3.7.
- IPCC, 2006 Revised IPCC Guidelines for National Greenhouse Gas Inventories. Volume 1 Greenhouse Gas Inventory Reporting Instructions, Chapter 2, Reporting the National Inventory, Table 2-1, page 2.3
- Jiménez, Q; Rojas, F; Rojas, V; Rodríguez, L. 2002. Árboles maderables de Costa Rica. Ecología y Silvicultura. Heredia, Costa Rica. INBío. 361 p.
- Kanninen, M. 1997. Los bosques y el cambio global. En: Resúmenes de ponencias del III CONGRESO FORESTAL CENTROAMERICANO. Heredia (Costa Rica): Impresos Belén, 1997. p. 2-5.
- Liski, J. Nissinen, A. Erhard, M and O. Takkinen. 2003Climatic effects on litter decomposition from arctic tundra to tropical rainforest. Global Change Biology 9(4): 575-584.
- MacDicken, K. 1997. A guide to monitoring carbon storage in forestry and agroforestry projects. F. C. M. P. Winrock Internationl Institute for Agricultural Development. US. 91 p.

- Muñoz, D.; C.A. Harvey; F.L. Sinclair; J. Mora; M. Ibrahim. 2003. Conocimiento local de la cobertura arbórea en sistemas de producción ganadera en dos localidades de Costa Rica. Agroforestería en las Américas 10(39-40):61-68.
- Olguín, M. Masera, O. y A. Velázquez. 2003. El potencial de captura de carbono en mercados emergentes. Pag:489-512. En: Velázquez, Alejandro, Alejandro Torres y Gerardo Bocco (comps.) Lasenseñanzas de San Juan : investigación participativa para el manejo integral de recursos naturales, México, Instituto Nacional de Ecología.
- Pagiola S., P. Angostini, J. Gobbi, M. Ibrahim, E. Murgueitio, E. Ramírez, M. Rosales & J.P. Ruiz. 2004. Paying for biodiversity conservation services in agricultural landscapes. Paper 96. Departamento Ambiental, Banco Mundial. Washington DC, EEUU.
- Pérez, LD; Kanninen, M. 2003. Aboveground biomass of *Tectona grandis* plantations in Costa Rica. Journal of Tropical Forest Science 15(1): 199-213.
- Perez, S., Jandl, R. and A. Rubio-Sanchez. 2007. Modelación del secuetro de carbono en sistemas forestales: Efecto de la elección de especies. Ecología 21:341-352.
- Ríos, N., A. Cárdenas, H. Andrade, M. Ibrahim, F. Jimenez, F. Sancho, E. Ramírez, B. Reyes & A. Woo. 2007. Escorrentía superficial e infiltración en sistemas ganaderos convencionales y silvopastoriles en el trópico subhúmedo de Nicaragua y Costa Rica. Agroforestería Américas 45: 66-71.
- Ruiz, A. 2002. Fijación y almacenamiento de carbono en sistemas silvopastoriles y competividad económica en Matiguás, Nicaragua. Escuela de Posgrado. Turrialba, Costa Rica., Centro Agronómico Tropical de Investigación y Enseñanza.
- Villanueva, C., D. Tobar, M. Ibrahim, F. Casasola, J. Barrantes & R. Arguedas. 2007. Arboles dispersos en pasturas de fincas ganaderas en la región del Pacifico Central de Costa Rica. Agroforestería Américas 47:12-20.
- Villanueva, C., M. Ibrahim. C. A. Harvey. F. Sinclair; D. Munoz. 2003b. Estudio de las decisiones claves que influyen sobre la cobertura arbórea en fincas ganaderas de Canas, Costa Rica, Agroforestería en las Américas 10(39-40):69-77.
- Zamora, S. 2007. Efecto de los pagos por servicios ambientales en la estructura, composición, conectividad y el *stock* de carbono presente en el paisaje ganadero de Esparza, Costa Rica. Tesis de Maestria, Escuela de postgrado- CATIE-Trurrialba, Costa Rica.

5. CAPITULO 3: EMISIONES DE GASES DE EFECTO INVERNADERO EN SISTEMAS GANADEROS EN LA PROVINCIA DE GUANACASTE

5.1. Resumen

El análisis se realizó para 13 fincas ganaderas. Los sistemas evaluados fueron: engorde, lechería y doble propósito. Las emisiones totales de las fincas fueron 1649 tCO2e. Las emisiones provenientes de los procesos fisiológicos de los animales representaron 87% de las emisiones totales. Sin embargo, la modelación en aumentos paulatinos en la digestibilidad y proteína cruda demostró que la mayor reducción marginal de emisiones de GEI por fermentación entérica y manejo de residuos sólidos y líquidos se obtiene entre el intervalo 47% DIVMS < X < 52% DIVMS y aumento de % PC de 7% a un 9%. Por sobre el intervalo anteriormente señalado las reducciones marginales decrecen respecto al aumento porcentual de la digestibilidad de materia seca.

5.2. Introducción

Costa Rica es el primer país latinoamericano decidido al logro de la carbono neutralidad nacional, esto requiere un conocimiento sistemático de los procesos productivos involucrados en su economía. La estrategia de Cambio Climático¹ de Costa Rica expresa que el 38,2% de las emisiones de CO₂e provienen de la agricultura, incluida la ganadería, considerada una fuente intensiva en emisiones de GEI, principalmente metano (CH₄) y oxido nitroso (N₂O).

Se reconoce que el eje principal de mitigación al Cambio Climático de Costa Rica es la gestión de su capital natural por medio de reforestación, conservación de los bosques y la implementación de sistemas agroforestales. En este sentido las fincas ganaderas albergan un amplio potencial como aporte al servicio ecosistémico de regulación climática, tanto por la presencia de bosques como por la aplicación de sistemas silvopastoriles.

Sin embargo, aún quedan algunas interrogantes que resolver, en cuestión de conocer realmente el aporte de las fincas ganaderas para cumplir con este objetivo y para dilucidar las principales estrategias de reducción de emisiones de los gases que se les hacen responsables.

Esta sección expondrá el análisis general de emisiones de 13 fincas ganaderas de distintos sistemas (lechero, engorde y doble propósito) y una propuesta de valoración analizando el balance de 6 fincas a través de la óptica del Análisis del Ciclo de Vida para construir la huella de carbono.

¹ Estrategia de Cambio Climático de Costa Rica presentada en el Foro de Negociaciones de Cambio Climático de América Latina, el Caribe y la Unión Europea (Dobles, 2009).

5.3. Metodología

Se ha especulado en demasía sobre cuáles deben ser los enfoques para cuantificar los GEI de los sistemas productivos y sus eventuales beneficios para los sistemas agrícolas. Si bien la discusión recién comienza ya existen algunos avances para comprender y estandarizar metodologías para la cuantificación de emisiones a lo largo del sistema.

En el último seminario realizado por la *British Society Animal Science* (BSAS) realizado el año 2009 se concluyó que el Análisis de Ciclo de Vida (ACV) tiene el potencial de evaluar el impacto de las políticas de desarrollo (reducción de emisiones, mejorar los beneficios económicos, evaluar el impacto de capacitaciones y criterios de interpretación de los datos), conocer los vacios sobre las políticas ministeriales, los cambios de la conducta del consumidor y mejorar la comprensión de las dinámicas de las fincas y la sistematización de la información. Además se expresó la necesidad de definir responsabilidades a lo largo de la cadena productiva, aspecto el cual no está definido para eventuales políticas de mitigación a nivel del sector.

En la actualidad existen dos documento con alcance internacional de mayor vigencia, el primero es PAS2050² "Especificaciones para la evaluación del análisis del ciclo de vida de las emisiones de Gases de Efecto Invernadero de productos y servicios" y el Voluntary Carbon Estándar. Este último ha desarrollado un enfoque para la cuantificación de potenciales bonos de carbono para ser ofrecidos de manera confiable, verificable y monitoreables. Sin embargo, todas las herramientas y conceptos anteriormente señalados no han sido adaptados a las realidades de los países del trópico, lo cual genera un desafío adicional tanto para instituciones públicas como de investigación, aspecto que se discutirá a lo largo de esta sección.

5.3.1. Caracterización de las fincas ganaderas dentro del estudio en la región de Chorotega

Se evaluaron 13 fincas de los cantones de: Carrillo, La Cruz, Hojancha, Liberia, Nicoya, Upala, Tilaran, Cañas, Abangares, Nandayure. La información fue levantada a través de encuestas presenciales en cada una de las fincas analizadas.

Se observaron tres tipos de sistemas de producción (fincas lecheras, doble propósito y de engorde). El cuadro 36 muestra aspectos relevantes para contextualizar los sistemas de producción evaluados.

² Véase http://www.ghgprotocol.org/

Cuadro 36. Caracterización de los sistemas de producción

Categoría	Aspecto Relevantes		
Acceso al predio	100% de los productores tienen acceso al predio.	66% de los predios tienen camino destapado y transitable. Sin embargo solo 30% tiene camino pavimentado al predio.	
Electricidad y telefonía	80% cuenta con electricidad.	60% cuenta con teléfono de red fija.	
Superficie y maquinaria	El 70% posee fincas menores de 50 ha. 30% posee fincas mayores de 60 ha.	80% posee vehículo, 60% tiene picadora de pasto, 46% posee bomba para riego.	
Carga animal y forrajes	En promedio la carga animal es de 1,7 UA/ha.	100% de los productores posee banco forrajero y/o pasturas mejoradas.	
Utilización de energía dentro de la finca	80% utiliza diesel para alguna actividad de la finca. 0% utiliza energías renovables.	100% de los finqueros aplica algún tipo de fertilizante.	

Los aspectos mencionados en el cuadro 36 se relacionan con la intensidad de emisiones de GEI que puede tener un sistema ganadero, por ejemplo: conocer la infraestructura instalada, la accesibilidad a servicios, la utilización de maquinaria y la utilización o no de energías renovables. Respecto a la calidad de las dietas de las fincas el hecho de que el 100% tenga banco forrajeros o pasturas mejoradas hace anticipar que las digestibilidades deberían ser >=45%. Respecto a la composición del hato evaluado (cuadro 37) se consideraron 9 categorías diferentes.

Cuadro 37. Categorías en la composición del hato en las 13 fincas evaluadas

Categorías	N° animales	
Vacas lecheras	330	
Vacas secas	137	
Novillas 1-2	134	
Novillas > 2 años	214	
Novillos 1-2	56	
Novillos >2 años	180	
Terneros	93	
Terneras	125	
Toros	24	

En términos productivos (cuadro 38) las principales castas observadas son: Brahaman, Pardo, Holstein, Jersey, Normando y Nelore.

Cuadro 38. Promedios productivos observados en los distintos sistemas productivos

Tipo de sistema	N° fincas	Lit. leche/día/animal	Kg GPV/día/animal
Lechería	1	6,5	n/a
Doble propósito	10	4,8	0,58
Carne-cría (engorde)	2	n/a	0,6

Las lecherías en Costa Rica se desarrollan principalmente en zonas altas y climas fríos dependientes de insumos externos con alto potencial genético para la conversión de energía en leche. Los sistemas de carne-cría representan aproximadamente el 60% del hato nacional y se basa casi exclusivamente de gramíneas bajo pastoreo con bajas aplicaciones tecnológicas lo que ha generado bajos rendimientos productivos. Los sistemas doble propósito representan el 30% del hato nacional, su principal característica es del ordeño con ternero al pie y una baja longitud de la lactancia, la actividad se desarrolla principalmente en zonas bajas húmedas con una marcada época seca donde disminuye la producción de leche (Montenegro et al 2000).

5.3.2. Principales supuestos para la cuantificación de GEI en los sistemas ganaderos mencionados

Siguiendo los lineamientos PAS2050 y IPCC 2006 Capitulo 10 "Emisiones del Ganado y Manejo de Desechos Sólidos y Líquidos" y reconociendo los vacios de información concerniente a la dinámica de todas las fincas durante el año se establecieron los siguientes supuestos:

- ✓ El hato no varía durante el año lo que significa considerar la composición del hato al momento de realizadas las entrevistas.
- ✓ La longitud de la lactancia para fincas lecheras se estableció en 277 días y para fincas doble propósitos 210 días.
- ✓ En caso de no tener registro sobre % grasa y proteína se asumió 4% y 3,6% respectivamente.
- ✓ 1 unidad animal corresponde a 400 Kg PV.
- ✓ La tasa de parición para fincas lecheras se utilizó un 75% y para fincas doble propósitos de 65%.
- ✓ Se asumió que a diferencia de las vacas lactantes, otros grupos etarios de bovinos no pierden peso en ninguna época del año.

- ✓ Teóricamente se observan 6 meses de época seca y 6 meses de época lluviosa por lo tanto se asumió un ciclo de 180 días por cada época.
- ✓ La ganancia de peso se estimo en 0,45 Kg en caso que las fincas no reportaran este dato.

El Cuadro 39 presenta los supuestos efectuados para el PV de los animales a lo largo de este estudio.

Cuadro 39. Supuestos utilizados respecto al peso de las diferentes categorías del hato

Estado fisiológico	Peso promedio (Kg)	Peso corporal adulto (Kg)
Vacas lactantes	400	400
Vacas secas	400	400
Novillas > 2 años	240	400
Novillas 1-2 años	200	400
Novillos > 2 años	280	500
Novillos 1-2 años	200	500
Terneros	120	500
Terneras	120	500
Toros	520	550

5.3.3. Diagrama y presentación de las fronteras del análisis

Las emisiones de GEI en sistemas ganaderos pueden diferenciarse a partir de dos aspectos: emisiones dentro de la finca y emisiones fuera de la finca. Construir la huella de carbono requiere diferenciar los procesos involucrados en la actividad por fases (figura 17)

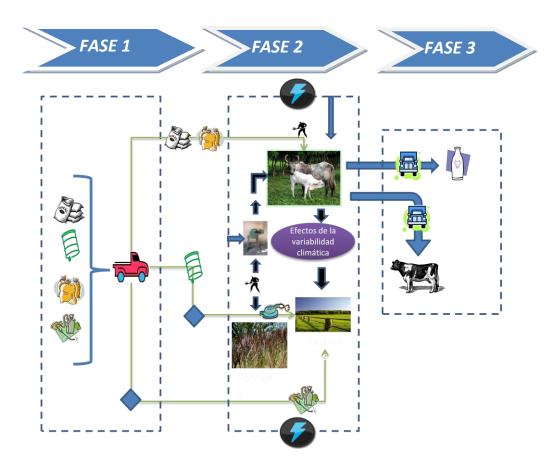


Figura 17. Fases que intervienen en la actividad ganadera

5.3.4. Fases del cálculo de emisiones

Para las 13 fincas evaluadas se calcularon las emisiones identificadas en las 3 fases.

d) Las emisiones que componen la FASE 1:

- ✓ Emisiones de CO₂ procedentes de la utilización de combustibles fósiles para el transporte de: fertilizantes, concentrados, herbicidas y diesel para el funcionamiento de maquinarias.
- ✓ Emisiones de CO₂ procedentes de la utilización de combustibles fósiles para la generación de energía eléctrica.

Por medio de la información levantada a través del instrumento (entrevista- Anexo 2) se estableció la frecuencia mensual de los viajes y el gasto mensual en combustible por transporte. Cabe señalar que las respuestas de los productores es una aproximación ya que no llevan registro detallado de sus gastos en combustible.

Se utilizó la siguiente ecuación:

Ecuación 1

Emisiones= \sum (a) Combustible(a)*FE(a)

Donde:

Emisiones= emisiones de CO₂ (kg). Combustible = consumo de combustible (TJ). FE= factor de emisión (kg/TJ). a= tipo de combustible.

Para el caso de Chorotega se identificó el consumo de dos tipos de combustibles, Diesel y Gasolina, los cuales tienen factores de emisión diferentes, para el caso del Diesel el factor de emisión utilizado es de 2,83 Kg CO₂ l⁻¹, así mismo para el caso de la Gasolina el factor de emisión considerado es de 2,33 Kg CO₂ l⁻¹ según la guía del IPCC 2006 metodología 1.

e) Las emisiones que componen la FASE 2:

- ✓ Emisiones de CO₂ procedentes de la utilización de combustibles fósiles para el funcionamiento de las maquinarias dentro de la finca.
- ✓ Emisiones de CO₂ procedentes de la utilización de combustibles fósiles para el funcionamiento de bombas de riego.
- ✓ Emisiones de N₂O procedentes de la aplicación de fertilizantes sintéticos en pasturas cuantificadas a partir de la metodología 1 IPCC.

- ✓ Emisiones de CH₄ procedentes de la fermentación entérica cuantificadas a partir de la metodología 2 y 3 IPCC.
- ✓ Emisiones de CH₄ procedentes del manejo de residuos sólidos y líquidos cuantificadas a partir de la metodología 2 y 3 IPCC.
- ✓ Emisiones de N₂O procedentes del manejo de residuos sólidos y líquidos cuantificadas a partir de la metodología 2 y 3 IPCC.

Las emisiones de CO_2 procedente de la utilización de combustibles fósiles para el funcionamiento de maquinaria o bomba de riego se utilizó la ecuación $N^{\circ}1$ anteriormente señalada. Es importante mencionar que no todas las fincas realizan estas prácticas, en esos casos no fueron consideradas.

Las emisiones de N_2O procedentes de la aplicación de fertilizantes sintéticos en pasturas se producen a través de la nitrificación y denitrificación. Inicialmente se identificaron los fertilizantes más utilizados (urea (46% de nitrógeno) y F 10-30-10 (10% de nitrógeno)).

*Las ecuaciones*³ *utilizadas*:

Ecuación 2

 N_2O_{inputs} - $N=F_{sn}*EF_1$

Donde:

N₂O_{inputs}-N= emisiones directas anuales de N₂O-N por aplicaciones de N en el manejo del suelo.

F_{sn}= cantidad anual de N aplicado de fertilizante sintético en el suelo.

 EF_1 = factor de emisión para N_2O en las aplicaciones de N, kg N_2O -N (kg N aplicaciones)⁻¹ es de 0,01 [kg N2O-N (kg N)-1).

44/28= conversión de (N₂O-N) emisiones en N₂O_(mm) emisiones.

Emisiones provenientes de los procesos fisiológicos de los animales

Para fermentación entérica se cuantificaron las emisiones de CH₄ por medio de la metodología 2 y 3 del IPCC, para lo cual se generaron los factores de emisión de acuerdo de las dietas y las características fisiológicas y productivas del hato.

Ecuación 3

 $E(fe) = FE(fe) \times Población / (103 kg t-1)$

Donde:

E(fe)= emisiones de metano procedentes de la fermentación entérica (t CH4)

³ Capítulo 11 IPCC "N₂O Emissions from Managed Soils, and CO₂ Emissions from lime and urea application" (Tier 1).

FE(fe) = el factor de emisión entérica de una categoría de animales (kg CH4 animal-1 año-1)

Para obtener el factor de emisión se utilizó la siguiente ecuación:

Ecuación 4

 $FE = (EB \times Ym \times Nd) / (55,65 \text{ MJ kg-1 CH4})$

Donde:

FE = factor de emisión (kg CH4 animal-1 año-1)

EB = es la absorción de energía bruta (MJ animal-1 día-1)

Ym = es la tasa de conversión del metano, que es la fracción de energía bruta presente en los alimentos que se convierte en CH4 el estudio se asumió un valor de Ym de 0,060 (IPCC 2006).

Nd= es el número de días del ciclo de la estimación.

Para la estimación de Energía Bruta requerida por los animales se utilizan ecuaciones (ANEXOS) las cuales están en función del estado fisiológico del animal, valor nutritivo y de la digestibilidad de las dietas.

Las emisiones provenientes del manejo del estiércol se utilizaron las metodologías sugeridas por el IPCC los gases que fueron cuantificados fueron CH₄ y N₂O.

Para las emisiones de metano se utilizaron las siguientes ecuaciones:

Ecuación 5

E(me) = FE(me)(i)x Población/(103 kg t-1)

Donde:

E(me)= las emisiones de CH4 procedentes del manejo del estiércol de los animales de la categoría i (t CH4)

FE(me) = es el factor de emisión de CH4 por manejo del estiércol de la categoría de animales i (kg CH4 animal-1 año-1)

El factor de emisión de CH4 (FE(me)) procedente del manejo del estiércol se estimó mediante la siguiente ecuación:

Ecuación 6

 $FE(me) = [(SVixNd) \times (Boi \times 0.67) \times \Sigma(jk)(FCMjk/100) \times SMijk]$

Donde:

FE(me)= factor de emisión de CH4 de un animal de la categoría i (kg CH4 por ciclo o por año).

SVi= sólidos volátiles excretados por el animal por día en la categoría i (kg MS animal-1 día-1)

Nd= número de días del ciclo de la estimación

Boi= capacidad máxima de producción de CH4 del estiércol de un animal en la categoría i (m3 kg-1 de SV).

FCMjk=factores de conversión del CH4 para cada sistema j de manejo del estiércol, por zona climática k (%)

SMijk= es la fracción del estiércol de la categoría de animales i, tratado con el sistema de manejo j.

Para la estimación de la tasa de excreción de sólidos volátiles se utilizó la siguiente ecuación:

Ecuación 7

 $SV = [EB \times (1-(ED/100))+(EU)] \times [(1-(Ceniza/100))/VCD]$

Donde:

SV = excreción de sólidos volátiles por día en base a la materia orgánica seca (kg SV día-1)

EB= energía bruta ingerida (MJ día-1)

ED= energía digestible del alimento (%)

EU= energía urinaria (MJ día-1), Ceniza

VCD= valor calórico de la dieta (MJ kg-1 MS)

El contenido de cenizas del estiércol se utilizó un valor de referencia de un 9% y la energía urinaria se estimó como una fracción de la EB de 0,04.

Para las emisiones de oxido nitroso por manejo del estiércol se calcularon utilizando las siguientes ecuaciones:

Ecuación 8

 $N_2OD(me) = [(Población(i)x Nex(i)x\Sigma(jk) MS(i,j)) FE3(s)]x(44/28)$

Donde:

 $N_2OD(me)$ = emisiones directas de N_2O debidas al manejo del estiércol de los animales de la categoría i (kg N_2O por ciclo o por año).

Nex= valor promedio de excreción de N por animal de la categoría i (kg N animal-1).

MS(i,j)= fracción de la excreción total de nitrógeno de los animales de la categoría i que se maneja en el sistema de gestión del estiércol j.

FE3(s)= factor de emisión para emisiones directas de N_2O del sistema de manejo del estiércol s (kg N_2O -N kg N-1) en el sistema de manejo del estiércol j y 44/28 es la conversión de emisiones de N_2O -N(me) a emisiones de N_2O -(me).

La tasa de excreción de nitrógeno se estimó a partir de la ingesta de nitrógeno para cada categoría de animales, mediante la siguiente ecuación:

Ecuación 9

Nex = Ningesta(i)x (1-Nretención(i))

Donde:

Nex= tasa de excreción de N por ciclo u año (kg N animal-1) de animales en la categoría i. Ningesta(i)= ingesta anual de N por animal de la categoría i (kg N animal-1 año-1). Nretención(i)= fracción de la ingesta anual de N retenida por el animal de la categoría i.

Para las ecuaciones necesarias para calcular el proceso de ingesta y de retención de nitrógeno (ANEXO 6 y 7) se utilizaron los valores sugeridos por el IPCC concernientes para Latinoamérica.

f) Las emisiones que componen la FASE 3 son las siguientes:

Los límites considerados para la Fase 3 de este estudio solo representan las emisiones del transporte de los productos finales.

✓ Emisiones de CO₂ procedentes de la utilización de combustibles fósiles para el transporte de los productos finales.

Sin embargo, la gran mayoría de los productores entrega el producto en la puerta de la finca lo que desliga responsabilidades en términos de emisiones a los productores y sería necesario realizar un análisis más extenso para conocer las implicancias de los procesos involucrados hasta el detallista.

5.4. Resultados

Los resultados preliminares dan cuenta de un total de 1110 animales, si bien las emisiones fueron calculadas a partir de las metodologías 2 y 3, a modo de comparación utilizando la metodología 1 del IPCC el cual utiliza un factor de emisión por *default*, esto correspondería a 79,92 tCH₄ lo que equivale a 1678,3 tCO₂e por fermentación entérica. Respecto al manejo de residuos sólidos y líquidos 1,1 tCH₄, 0,49 tN₂O correspondiente a 23,31 tCO₂e y 238,7 tCO₂e respectivamente⁴. No obstante los resultados de mayor relevancia son los expuestos a continuación por las metodologías 2 y 3 que tienen mayor precisión y menor nivel de incertidumbre.

⁴ El gas metano tiene un poder de calentamiento global de 21 para un horizonte de permanencia de 100 años. El oxido nitroso tiene un poder de calentamiento global de 310 para un horizonte permanencia de 100 años. "Changes in Atmospheric Constituents and in Radiative Forcing" Table.2.14

Las fincas fueron codificadas p				
para conocer sus actividades, numérica no corresponde al ord		de las	mismas,	la secuencia

Finca código 201: finca ubicada en el cantón de carrillo, sistema doble propósito. Un hato compuesto por 34 animales en pastoreo rotacional.

Cuadro 40. Composición del hato

Hato	N° animales
Vacas paridas	10
Vacas secas	6
Novillas>2	5
Novillas 1-2	4
Crías	5
Toros	4

Superficie productiva de 12,5 hectáreas y una carga animal de 2,2 UA/Ha. El pasto representativo de acuerdo información primaria es Anglinton y como pasto de corte caña de azúcar ofrecido en la época seca. Las emisiones totales dentro de la finca equivalen a 60,1 tCO₂e y fuera de la finca 3,9 tCO₂e.

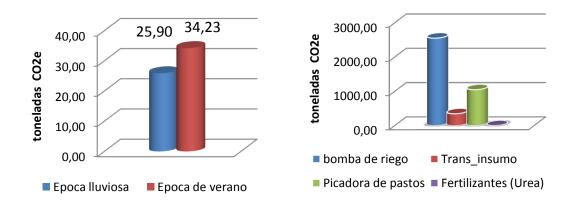


Figura 18. Emisiones de GEI dentro y fuera de la finca

Figura 19. Mapas del uso de suelo de la finca

Finca código 202: finca ubicada en el cantón de La Cruz, sistema doble propósito. Un hato compuesto por 48 animales en pastoreo contínuo.

Cuadro 41. Composición del hato

N° animales
11
14
5
5
10
2
1

Superficie productiva de 26,5 hectáreas y una carga animal de 3,3 UA/Ha. El pasto representativo de acuerdo información primaria es Anglinton y Estrella y ofrece concentrado en época seca. Las emisiones totales dentro de la finca equivalen a 89,7 tCO₂e y fuera de la finca 1 tCO₂e.

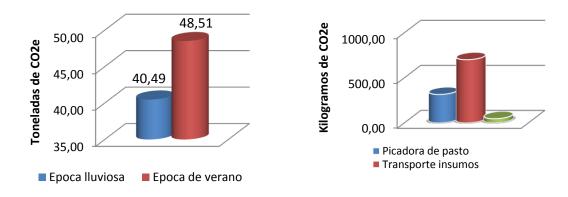


Figura 20. Emisiones de GEI dentro y fuera de la finca

Figura 21. Mapas del uso de suelo de la finca

Finca código 203: finca ubicada en el cantón de Hojancha, sistema doble propósito. Un hato compuesto por 69 animales en pastoreo rotacional.

Cuadro 42. Composición del hato

Hato	N° animales
Vacas paridas	26
Terneros	12
Terneras	26
Toros	2

Superficie productiva de 6 hectáreas y una carga animal de 0,92 UA/Ha. El pasto representativo de acuerdo información primaria es Brachiaria y ofrece concentrado en época seca. Las emisiones totales dentro de la finca equivalen a 88,5 tCO₂e y fuera de la finca 3,5 tCO₂e.

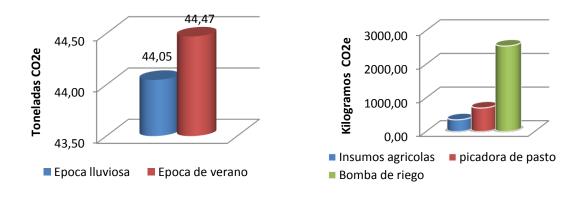


Figura 22. Emisiones de GEI dentro y fuera de la finca

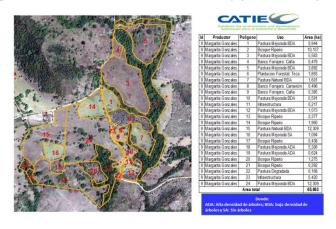


Figura 23. Mapas del uso de suelo de la finca

Finca código 204: finca ubicada en el cantón de Hojancha, sistema doble propósito. Un hato compuesto por 122 animales en pastoreo rotacional semi-estabulado.

Cuadro 43. Composición del hato

Hato	N° animales
Vacas paridas	70
Terneros	13
Terneras	35
Toros	4

Superficie productiva de 115 hectáreas y una carga animal de 0,6 UA/Ha. El pasto representativo de acuerdo información primaria es Brachiaria y Decumbes y ofrece pasto de corta en época seca. Las emisiones totales dentro de la finca equivalen a 211 tCO₂e y fuera de la finca 10,7 tCO₂e.

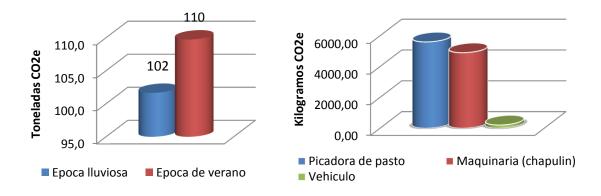


Figura 24. Emisiones de GEI dentro y fuera de la finca

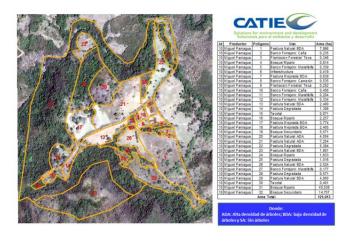


Figura 25. Mapas del uso de suelo de la finca

Finca código 205: finca ubicada en el cantón de Hojancha, sistema doble propósito. Un hato compuesto por 100 animales en pastoreo rotacional semi-estabulado.

Cuadro 44. Composición del hato

Hato	N° animales
Vacas paridas	40
Novillas 1-2 años	18
Novillos 1-2 años	40
Toros	2

Superficie productiva de 82 hectáreas y una carga animal de 0,9 UA/Ha. El pasto representativo de acuerdo información primaria es Brachiaria y ofrece concentrado en época seca. Las emisiones totales dentro de la finca equivalen a 165 tCO₂e y fuera de la finca 0,7 tCO₂e.

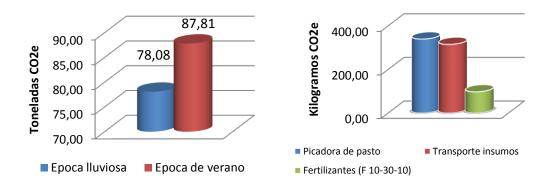


Figura 26. Emisiones de GEI dentro y fuera de la finca

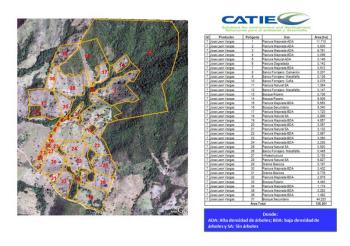


Figura 27. Mapas del uso de suelo de la finca

Finca código 206: finca ubicada en el cantón de Hojancha, sistema doble propósito. Un hato compuesto por 57 animales en pastoreo rotacional semi-estabulado.

Cuadro 45. Composición del hato

Hato	N° animales
Vacas paridas	20
Terneros	25
Terneras	10
Toros	2

Superficie productiva de 30 hectáreas y una carga animal de 1,2 UA/Ha. El pasto representativo de acuerdo información primaria es Brachiaria, se ofrece además gallinaza y pastos de corta como caña y Cratylia en época seca. Las emisiones totales dentro de la finca equivalen a 92 tCO₂e y fuera de la finca 2,5 tCO₂e.

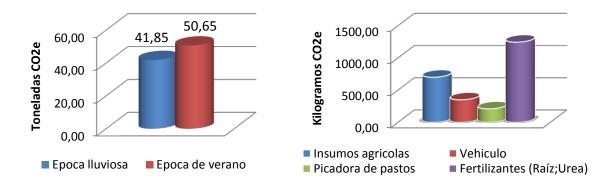


Figura 28. Emisiones de GEI dentro y fuera de la finca

Figura 29. Mapas del uso de suelo de la finca

Finca código 207: finca ubicada en el cantón de Liberia, sistema doble propósito. Un hato compuesto por 164 animales en pastoreo rotacional.

Cuadro 46. Composición del hato

Hato	N° animales
Vacas paridas	48
Vacas secas	22
Novillas>2 años	15
Novillas 1-2 años	25
Novillos >2 años	24
Novillos 1-2 años	11
Terneros	9
Terneras	7
Toros	3

Superficie productiva de 115 hectáreas y una carga animal de 1,1 UA/Ha. El pasto representativo de acuerdo información primaria es Jaragua, Decumbes, Mulato, se ofrece concentrado en época seca. Las emisiones totales dentro de la finca equivalen a 268 tCO₂e y fuera de la finca 3,1 tCO₂e.

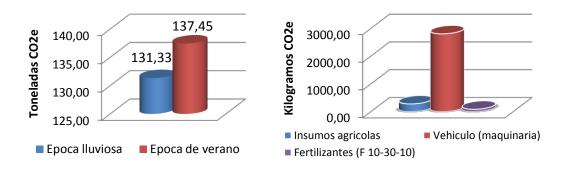
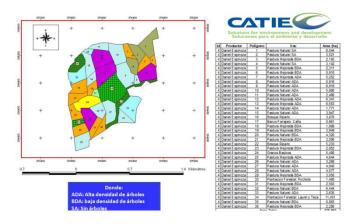



Figura 30. Emisiones de GEI dentro y fuera de la finca

Figura 31. Mapas del uso de suelo de la finca

Finca código 209: finca ubicada en el cantón de Liberia, sistema doble propósito. Un hato compuesto por 63 animales en pastoreo rotacional.

Cuadro 47. Composición del hato

Hato	N° animales
Vacas doble propós	ito 16
Vacas secas	12
Novillas>2 años	8
Novillas 1-2 años	8
Novillos 1-2 años	3
Terneros	9
Terneras	7

Superficie productiva de 13,3 hectáreas y una carga animal de 3,3 UA/Ha. El pasto representativo de acuerdo información primaria es Mulato, Anglinton, Brachiaria y se ofrece pastos de corta Caña y Camerum además de concentrado en época seca. Las emisiones totales dentro de la finca equivalen a 89,2 tCO₂e y fuera de la finca 11,8 tCO₂e.

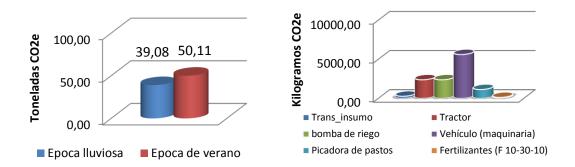
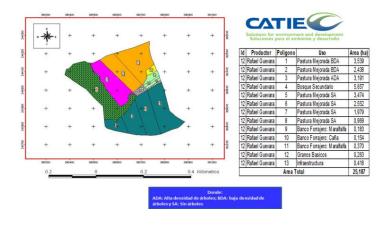



Figura 32. Emisiones de GEI dentro y fuera de la finca

Figura 33. Mapas del uso de suelo de la finca

Finca código 210: finca ubicada en el cantón de Upala, sistema lechero. Un hato compuesto por 88 animales en pastoreo rotacional.

Cuadro 48. Composición del hato

Hato	N° animales
Vacas paridas	50
Vacas secas	17
terneras	20
toros	1

Superficie productiva de 16 hectáreas y una carga animal de 3,6 UA/Ha. El pasto representativo de acuerdo información primaria es Estrella y se ofrece Maranfalfa y concentrado en época seca. Las emisiones totales dentro de la finca equivalen a 176 tCO₂e y fuera de la finca 8,6 tCO₂e.

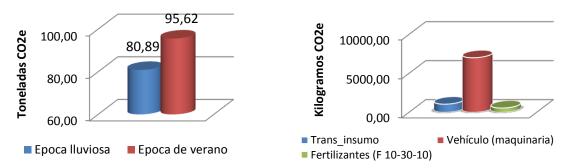


Figura 34. Emisiones de GEI dentro y fuera de la finca

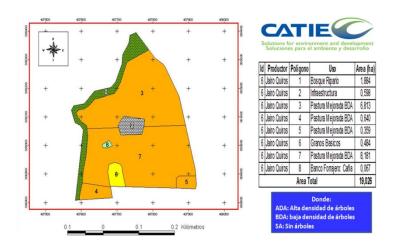


Figura 35. Mapas del uso de suelo de la finca

Finca código 211: finca ubicada en el cantón de Cañas, sistema doble propósito. Un hato compuesto por 20 animales en pastoreo rotacional.

Cuadro 49. Composición del hato

Hato	N° animales	
Vacas paridas	2	2
Vacas secas	4	4
Novillas>2 años	3	3
Novillas 1-2 años	3	3
Terneros	-	1
Terneras	-	1
Toros		1

Superficie productiva de 31 hectáreas y una carga animal de 1,2 UA/Ha. El pasto representativo de acuerdo información primaria es Brachiaria y se ofrece Camerum como pasto de corta en época seca. Las emisiones totales dentro de la finca equivalen a 176 tCO₂e y fuera de la finca 16,9 tCO₂e.

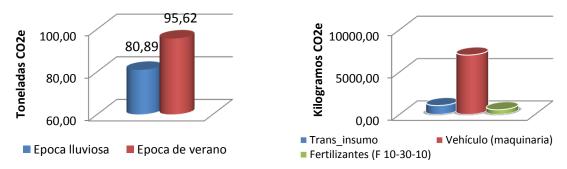


Figura 36. Emisiones de GEI dentro y fuera de la finca

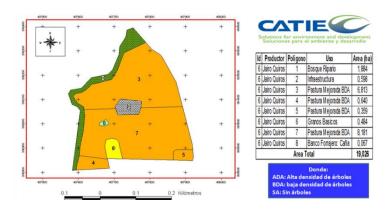


Figura 37. Mapas del uso de suelo de la finca

Finca código 213: finca ubicada en el cantón de Cañas, sistema de engorde. Un hato compuesto por 180 animales en pastoreo rotacional.

Cuadro 50. Composición del hato

Hato	N° animales
Novillas>2 años	80
Novillos 1-2 años	100

Superficie productiva de 88 hectáreas y una carga animal de 1,2 UA/Ha. El pasto representativo de acuerdo información primaria es Brachiaria Brizanta, y en época seca se mantiene a solo pastos y minerales. Las emisiones totales dentro de la finca equivalen a 340 tCO₂e y fuera de la finca 3,3 tCO₂e.

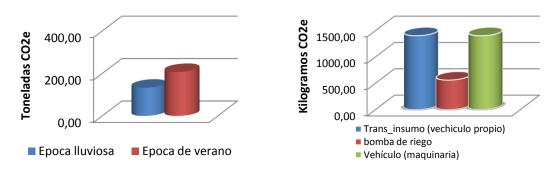


Figura 38. Emisiones de GEI dentro y fuera de la finca

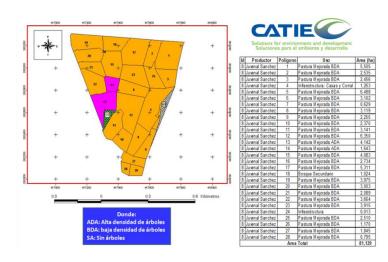


Figura 39. Mapas del uso de suelo de la finca

Finca código 214: finca ubicada en el cantón de Abangares, sistema doble propósito. Un hato compuesto por 25 animales en pastoreo rotacional.

Cuadro 51. Composición del hato

Hato	N° animales
Vacas paridas	8
Vacas secas	5
Novillas>2 años	2
Novillas 1-2 años	1
Terneros	5
Terneras	3
Toros	1

Superficie productiva de 21 hectáreas y una carga animal de 1,2 UA/Ha. El pasto representativo de acuerdo información primaria es Brachiaria Brizanta, Tanzania y se ofrece Maranfalfa y concentrado en época seca. Las emisiones totales dentro de la finca equivalen a 43 tCO₂e y fuera de la finca 3,5 tCO₂e.

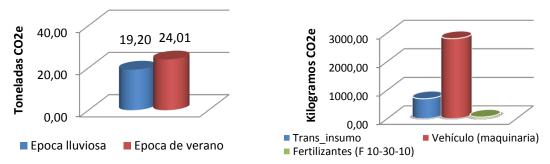


Figura 40. Emisiones de GEI dentro y fuera de la finca

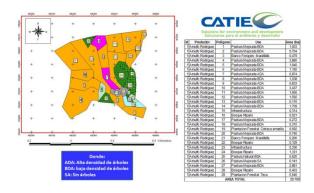


Figura 41. Mapas del uso de suelo de la finca

Finca código 215: finca ubicada en el cantón de Abangares, sistema doble propósito. Un hato compuesto por 54 animales en pastoreo rotacional y semi-estabulado.

Cuadro 52. Composición del hato

Hato	N° animales
Vacas doble propos	ito 14
Vacas secas	8
Novillas > 2 años	9
Novillos 1-2 años	6
Terneros	6
Terneras	10
Toro	1

Superficie productiva de 10,6 hectáreas y una carga animal de 2,6 UA/Ha. El pasto representativo de acuerdo información primaria es Brachiaria Brizanta y Toledo además se ofrecen pastos de corta: Maranfalfa, Caña, Camerum y Cratylia en época seca. Las emisiones totales dentro de la finca equivalen a 81,84 tCO₂e y fuera de la finca 10,5 tCO₂e.

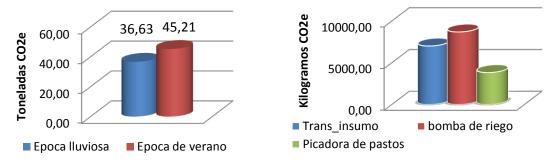


Figura 42. Emisiones de GEI dentro y fuera de la finca

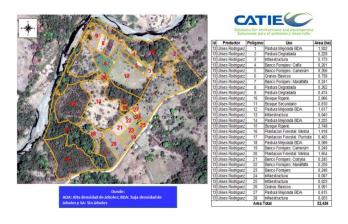


Figura 43. Mapas del uso de suelo de la finca

5.5. Conclusiones y modelación

- Las emisiones totales de GEI de las 13 fincas evaluadas se estimaron en 1649 tCO₂e. Si consideramos los resultados obtenidos por Tier 1 IPCC estimadas en 1945 tCO₂e se estaría sobre-estimando las emisiones en 297 t CO₂e. Si bien la diferencia no parece ser significativa, esto depende de la escala en que se realicen las evaluaciones, si en solo 13 hay diferencias de mas de 200 tCO₂e a nivel regional las diferencias pueden distorsionar los resultados para eventuales aplicaciones de políticas o para el inventario nacional de GEI. Por lo tanto como primera conclusión se recomienda utilizar al menos el Tier 2 y en lo posible Tier 3 para la cuantificación de emisiones GEI para Costa Rica.
- Las emisiones provienen principalmente de los proceso fisiológicos de los animales (fermentación entérica y residuos sólidos y líquidos) representaron el 87% de las emisiones totales, sin embargo las emisiones fuera de la finca por procesos y actividades se estimaron en 92,3 tCO₂e las cuales son evitables no así los procesos fisiológicos de los animales.

Realizando una modelación de una finca doble propósito, principal sistema encontrado en la zona a partir de un hato hipotético (cuadro 53) se establecieron tres escenarios.

Cuadro 53. Caracterización de una finca doble propósito

Hato	N° animales
Vacas doble propósito	16
Vacas secas o de cría	12
Novillas + 2 años	8
Hembras 1-2 años	8
Novillos 1-2 años	10
Crias sin destetar, de 0-1	año 12
Toros reproductores	2

Escenario 1: evaluación de las emisiones de GEI a partir de una línea base de 47% DIVMS y 5 %PC

Escenario 2: evaluación de las emisiones de GEI a partir de una línea base de 52% DIVMS y 7 %PC

Escenario 3: evaluación de las emisiones de GEI a partir de una línea base de 57% DIVMS y 9% PC

La figura 44 nos muestra que las principales reducciones de emisiones se producen en la transición del escenario 1 al escenario 2, al pasar de una digestibilidad de 47% a una de 52% significa reducir 18 tCO₂e. Si bien existe un aumento en las emisiones por residuos hay una ganancia neta de 16 tCO₂e.

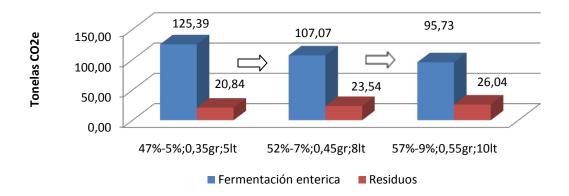


Figura 44. Escenarios de reducción de emisiones por mejoras en la calidad de la dieta y en productividad

Además hay una mejora en los indicadores productivos lo que significa tener los animales de engorde menor tiempo en la finca, por ende reducir emisiones por proceso de engorde.

La transición del escenario 2 al 3 reduce las emisiones en 8 tCO₂e, si bien es un aumento exactamente en 5 punto en la digestibilidad y 2 punto en proteína cruda la diferencia marginal disminuye en términos de reducción de emisiones, lo que plantea la interrogante si es costo efectiva esta mejora sin aplicar estrategias de mitigación adicionales.

En conclusión se podría decir que digestibilidades por sobre el 52% y un %PC que permite mejoras en la producción de leche del rango de 3 litros (respecto a línea base señalada) en fincas doble propósitos serían sistemas que no están siendo emisores de GEI sino que responden a criterios normales dentro de los procesos fisiológicos de rumiantes y de consecuencia natural de la ganadería.

5.6. BIBLIOGRAFIA

- Gill, M; Smith, P. Mitigating climate change: the role of livestock in agricultura Proceedings International Conference. 2008. Livestock and Global Climate Change. 29-30p
- Intergovernmental Panel Climate Change (IPCC). 2007. Cambio Climático. Mitigación.
- Intergovernmental Panel Climate Change (IPCC). 2007. Cambio Climático, Mitigación. Agricultura. 44p
- IPCC (Intergovernmental Panel Climate Change). 2006. Guidelines for National Green House Inventories.110p
- Rowlinson, P. Adapting livestock production systems to climate change temperate zones. Proceedings International Conference. 2008. Livestock and Global Climate Change. 61-63p
- Tamminga.S.2007. Feeding strategies to reduce methane loss in cattle. Animal Sciences Group. Netherland. 58p
- WRI (World Resources Institute). 2006. The Greenhouses Gas Protocol, Estados Unidos.

6. CAPITULO 4: BALANCE DE GASES DE EFECTO INVERNADERO EN 6 SISTEMAS GANADEROS EN LA PROVINCIA DE GUANACASTE

6.1. Resumen

El balance de Gases de Efecto Invernadero (GEI) se llevo a cabo para 6 fincas representativas de la región de Chorotega, Costa Rica. Las fincas evaluadas fueron sistemas doble propósito, engorde y lechería. Se utilizaron las ecuaciones del IPCC, modelación CO2FIX e información primaria por entrevistas presenciales. Además se utilizaron Sistemas de Información Geográfica (SIG) para digitalizar usos de suelo previo levantamiento de puntos a partir de GPS. Los usos de suelo de mayor aporte para el balance de GEI fueron los bosques; ripario y secundario. Las fincas doble propósito presentan un balance de GEI positivo o superavitario en promedio de 97 tCO2e. La finca de engorde y lechería presenta un balance negativo de -85,3 tCO2e y -111,7. Todas las fincas presentan un balance negativo de GEI si se excluyen las áreas de bosque dentro del balance.

6.2. Introducción

Los servicios ecosistémicos (SE) han existido por millones de años, y es la primera vez que se ven amenazados por una especie del planeta. Los SE son la condición y proceso a través el cual los ecosistemas naturales y las especies conforman y sustentan la vida humana (Daily, 1997). Ellos mantienen la biodiversidad y la producción de bienes ecosistémicos (madera, forraje, biomasa energética, alimentos, etc.). Esta definición deja entrever que todo sistema productivo que utilice el capital natural del planeta tiene el potencial de ser oferente y tiene la responsabilidad de conservar y mantener los SE.

La ganadería ha sido expuesta a críticas y concepciones negativas respecto a su impacto en el medio ambiente y actualmente a lo que se refiere al cambio climático. Sin embargo, no se ha realizado una reflexión consciente del rol de la ganadería como una expresión cultural, un medio de vida para millones de familias campesinas y el potencial que tiene para brindar servicios ecosistémicos.

La ganadería por su naturaleza hace uso de un capital natural que interna SE que afectan tanto a las poblaciones locales como también sistemas ecosistémicos globales, entre ellos el de regulación climática. La significancia de un balance de Gases de efecto Invernadero (GEI) en sistemas ganaderos abre las puertas para entender la relación del sistema productivo con su capital natural y generar una nueva opinión respecto a su rol en la problemática del cambio climático, especialmente en lo que se refiere a las emisiones de GEI y el potencial de secuestro y remoción de GEI.

El balance de GEI puede ser entendido como un proceso dinámico en el cual confluyen las salidas de un sistema (en este caso gases de efecto invernadero) y la capacidad del mismo sistema para absorber dichos gases. El balance puede ser positivo, negativo o neutro,

dependiendo la intensidad y cantidad de los gases emitidos y la capacidad del capital natural para absorberlos. El proceso ha sido conceptualizado como la huella de carbono de un sistema. Conceptualizando *huella* como la presión que ejercen las actividades antropogénicas a la absorción, regulación de GEI. De esta manera la *huella de carbono* nos permite cuantificar la presión de las actividades antropogénicas sobre los ecosistemas de remoción y almacenamiento de carbono en términos de gases de efecto invernadero, medido en unidades de dióxido de carbono equivalente.

La intención de este capítulo es establecer el balance de GEI en 6 fincas de la región de Chorotega y establecer cuáles son las actividades y/o procesos que afectan al balance e identificar los puntos críticos para obtener un balance cero o positivo.

6.3. Metodología

La construcción de un balance de GEI se realiza a través de dos procesos: 1) la cuantificación de los GEI del sistema y 2) cuantificar las tasas de remoción de los usos de suelo seleccionados para el balance. Para la cuantificación de los GEI se utilizaron los resultados obtenidos en el Capitulo 3 y las tasas de remoción se utilizaron las obtenidas en el Capitulo 2. Para los usos de suelo los cuales no fueron monitoreados en campo se utilizaron los resultados obtenidos a través de la modelación del software CO2FIX e información secundaria proveniente del Proyecto de Enfoques Silvopastoriles Integrados para el Manejo de Ecosistemas (CATIE/GEF).

Los usos de suelo se agruparon en dos categorías: 1) vegetación en sucesión (Bosques Secundarios, Bosques Riparios y Tacotales) y 2) Usos de suelos productivos con potencial de remoción de gases de efecto invernadero (principalmente pasturas). Los reservorios de carbono incluidos en el análisis fueron: reservorios arriba del suelo (biomasa leñosa arbórea y no arbórea) y bajo el suelo. No se consideraron: madera muerta, hojarasca ni otros reservorios existentes en el sistema.

Se realizó una clasificación del sitio por medio de fotografías satelitales (en los casos que fue posible) y en las fincas que no se logró obtener las fotos satelitales se realizó un levantamiento de punto por medio de GPS para luego generar mapas digitales con la debida clasificación de los usos de suelo.

6.3.1. Cuantificación de las remociones de carbono

Las remociones de C corresponden al crecimiento de biomasa identificada por las categorías anteriormente señaladas año a año, las cuales depende de la dinámica misma de la vegetación a lo largo del tiempo. Inicialmente se obtuvieron las tasas de remoción por uso de suelo utilizando la siguiente ecuación:

Ecuación

$$\Delta C = C_{\text{total(i)}} / T_{(i)}$$

Donde:

 ΔC = cambio en las existencia de carbono en el uso de suelo por unidad de tiempo (año).

C_{total(i)}= carbono total encontrado en el uso de suelo.

T= edad del uso de suelo

(j)= uso de suelo perteneciente a la finca.

Las edades de los usos evaluados se establecieron por medio de la información brindada por los productores (encuestas presenciales). La edad de cada uso de suelo varía respecto a la misma historia de la unidad finca, sin embargo se estableció un rango de edad para cada uso de suelo para luego obtener las tasas de remoción por uso de suelo.

Para la cuantificación de remociones totales por uso de suelo se utilizó la siguiente ecuación:

Ecuación

$$Re_{carbono(j)} = A_{(j)} * \Delta C_{(j)}$$

Donde:

Re_{carbono(i)}= remociones totales de C por uso de suelo.

 $A_{(i)}$ = superficie total por uso de suelo.

(j)= uso de suelo perteneciente a la finca.

A partir de esta ecuación se obtuvo las remociones totales para cada uso de suelo. Debido a las características propias de cada una de las fincas las remociones totales varían de acuerdo a cada finca.

Para generar el balance de GEI los resultados deben ser expuesto en tCO₂e para lo cual se utilizó la siguiente ecuación.

Ecuación

$$ReCO_2e_{(j)} = (A_{(j)} * \Delta C_{(j)}) * 44/12$$

Donde:

ReCO₂e_(i)= remociones totales de CO₂e por uso de suelo.

A_(i)= superficie total por uso de suelo.

 $\Delta C_{(i)}$ = cambio en las existencia de carbono en el uso de suelo por unidad de tiempo (año).

(j)= uso de suelo perteneciente a la finca.

Luego se estableció el balance de GEI utilizando la siguiente ecuación:

Ecuación

Balance GEI = $\sum ReCO_2e_{(j)} - \sum GEI_{(i)}$

Donde:

ReCO₂e_(i)= remociones totales de CO₂e por uso de suelo.

GEI_(i)= emisiones totales de CO₂e del sistema.

(i)= actividad o proceso que genera emisiones de GEI

(j)= uso de suelo perteneciente a la finca.

6.3.2. Selección de los usos de suelo

La selección de los usos de suelo para realizar el balance de GEI responde al *problema de la temporalidad*. Si bien la dinámica natural de la vegetación se encuentra siempre en crecimiento (sin contar los riesgos de incendios o plagas biológicas) las acciones antropogénicas o el mismo manejo del sistema productivo puede alterar la capacidad de remoción de la finca afectando negativamente el balance de GEI a lo largo del tiempo.

El cuadro 54 muestra los usos de suelo los cuales fueron analizados a lo largo de la investigación.

Cuadro 54. Tasas de remoción de los usos de suelo evaluados.

Usos de la tierra	Tasa de carbono de carbono (ton/ha/año)	
Pastura Degradada	-0,29	
Pastura Natural ADA	-	
Pastura Natural BDA	-	
Pastura Natural SA	-	
Pastura Mejorada ADA	1,34	
Pastura Mejorada BDA*	0,91	
Pastura Mejorada SA*	0,7	

Usos de la tierra	Tasa de carbono de carbono (ton/ha/año)	
Banco Forrajero Gramínea	4,64	
Banco Forrajero Leñosa	1,37	
Plantación Forestal	3,21	
Bosque Secundario	3,89	
Otros usos	-	
Total	-	

^{*}Datos estimados a partir d ela modelación de CO2fix

El cuadro 54 expresa las tasas de remoción que fueron encontradas en los usos de suelo evaluados en las fincas y los resultados obtenidos por la modelación en el software CO2fix, sin embargo el *criterio de temporalidad* y la directa relación con la actividad ganadera hace necesario generar los siguientes supuestos:

- Los bancos forrajeros se encuentran en constante presión por el sistema productivo lo que condiciona la temporalidad del carbono secuestrado, por lo tanto, no son considerados dentro del balance. Sin embargo, se pueden considerar como un uso de suelo que afecta positivamente el balance tanto por su presencia dentro del sistema (existencia de carbono) como por su efecto en el mejoramiento de la calidad en la dieta de los animales.
- Las plantaciones forestales se encuentran en constante manejo productivo referente a los turnos de corta y no se tiene un conocimiento de un plan de re-siembra por lo cual no fueron considerados dentro del balance de GEI.
- Los usos de suelo tales como pasturas y bosque fueron considerados dentro del balance asumiendo que los árboles permaneceran dentro del sistema por un horizonte de tiempo mayor a 25 años y el bosque permanecera inalterado por acciones antropogenicas que afecten las existencias y dinamica del flujo de las tasas de remoción. IPCC establece que toda acción de corta de la biomasa en el sistema se considera una emisión directa a no ser que se establezca un seguimiento de la biomasa existente.

Luego se seleccionaron 6 fincas a través de un analisis de conglomerados para obtener el presupuesto de carbono anual para compensar las emisiones de GEI del sistema ganadero.

6.4. Resultados

Los resultados se exponen por finca, expresando las emisiones de GEI de acuerdo a la composición del hato de cada finca y el sistema de pastoreo empleado. Las remociones se presentan por uso de suelo identificado en cada una de las fincas y posteriormente su respectivo balance. Las fincas fueron codificadas para identificación dentro de las bases de datos pero no representan una secuencia de los resultados.

6.4.1. Balance de GEI

a. Finca código 202:

Sistema doble propósito, hato compuesto por 48 animales (cuadro 56) en pastoreo continuo. Los usos de suelo (cuadro 55) identificados en la finca fueron: bosque secundario, pastura natural de baja densidad de árboles (BDA) y alta densidad de árboles (ADA).

Cuadro 55. Usos de suelo para compensación de GEI Cuadro 56. Composición del hato

Usos de suelo	На	Remociones tCO ₂
Bosque secundario	9,00	128,37
Pastura Natural BDA	19,11	56,07
Pastura Natural ADA	7,21	26,44
Total	35,33	210,88

Hato	N° animales
Vacas paridas	11
Vacas secas	14
Novillas>2	5
Novillas 1-2	5
Novillos 1-2	10
Terneras	2
Toro	1

La superficie productiva de la finca es de 26,5 hectáreas y una carga animal de 3,3 UA/Ha. Las emisiones totales anuales de la finca equivalen a 90 tCO₂e y su capacidad de remoción es de 210 tCO₂e año⁻¹ (figura X).

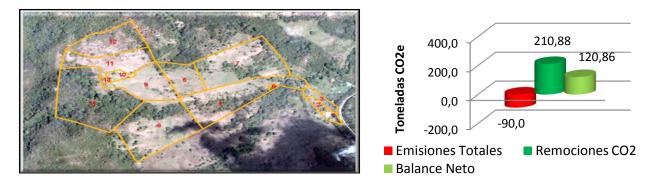


Figura 45. Mapa de uso de suelo y balance de GEI

El balance de GEI de la finca es positivo en 120,8 tCO₂e principalmente debido al aporte del bosque secundario identificado en la finca.

b. Finca código 206:

Sistema doble propósito, hato compuesto por 57 animales (cuadro 58) en pastoreo rotacional semi-estabulado. Los usos de suelo (cuadro 57) identificados en la finca fueron: bosque ripario, pastura mejorada sin árboles (SA) y pastura mejorada de baja densidad de árboles (BDA).

Cuadro 57. Usos de suelo para compensación de GEI Cuadro 58. Composición del hato

Usos de suelo	На	Remociones tCO ₂
Bosque ripario	22,8	250,8
Pastura mejorada SA	1,8	4,62
Pastura mejorada BDA	17,8	59,39
Total	42,4	314,81

N° animales
20
25
10
2

La finca cuenta con una superficie productiva de 30 hectáreas y una carga animal de 1,2 UA/Ha. Las emisiones totales anuales de la finca equivalen a 93,8 tCO2e y la capacidad de remoción es de 314,8 tCO2e año-1 (figura X).

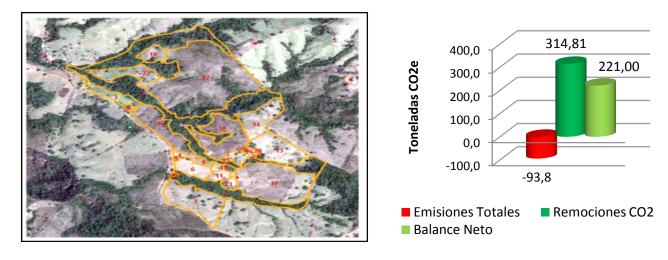


Figura 46. Mapa de uso de suelo y balance de GEI

El balance de la finca es positivo en 221 tCO2e principalmente por el aporte del bosque ripario identificado en la finca.

c. Finca código 209:

Sistema doble propósito, hato compuesto por 63 animales (cuadro 60) en pastoreo rotacional. Los usos de suelo (cuadro 59) identificados en la finca fueron: bosque secundario, pastura mejorada sin árboles (SA) y pastura mejorada de baja densidad de árboles (BDA) y pastura mejorada alta densidad de árboles.

Cuadro 59. Usos de suelo para compensación de GEI Cuadro 60. Composición del hato

Usos de suelo	На	Remociones tCO ₂
Bosque secundario	5,65	80,59
Pastura mejorada SA	8,97	23,02
Pastura mejorada BDA	5,97	19,92
Pastura mejorada ADA	3,10	15,23
Total	23,69	138,76

Hato	N° animales
Vacas paridas	16
Vacas secas	12
Novillas>2 años	8
Novillas 1-2 años	8
Novillos 1-2 años	3
Terneros	9
Terneras	7

La finca cuenta con una superficie productiva de 18,4 hectáreas y una carga animal de 3,3 UA/Ha. Las emisiones totales anuales de la finca equivalen a 101 tCO₂e y la capacidad de remoción de la finca es de 138,7 tCO₂e año⁻¹ (figura 47).

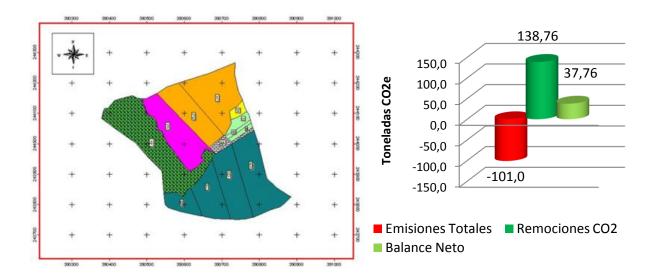


Figura 47. Mapa de uso de suelo y balance de GEI

El balance de la finca es positivo en 37,76 tCO₂e principalmente por el aporte del bosque secundario identificado en la finca.

d. Finca código 210:

Sistema lechero, hato compuesto por 88 animales (cuadro 62) en pastoreo rotacional. Los usos de suelo (cuadro 61) identificados en la finca fueron: bosque ripario y pastura mejorada baja densidad de árboles (BDA).

Cuadro 61. Usos de suelo para compensación de GEI Cuadro 62. Composición del hato

Usos de suelo	На	Remociones tCO ₂
Bosque ripario	1,80	19,80
Pastura mejorada BDA	15,90	53,05
Total	17,70	72,85

Hato	N° animales
Vacas paridas	50
Vacas secas	17
terneras	20
toros	1

La finca cuenta con una superficie productiva de 15,9 hectáreas y una carga animal de 4,4 UA/Ha. Las emisiones totales anuales de la finca equivalen a 185 tCO₂e y la capacidad de remoción de la finca es de 72,8 tCO₂e año⁻¹(Figura 48).

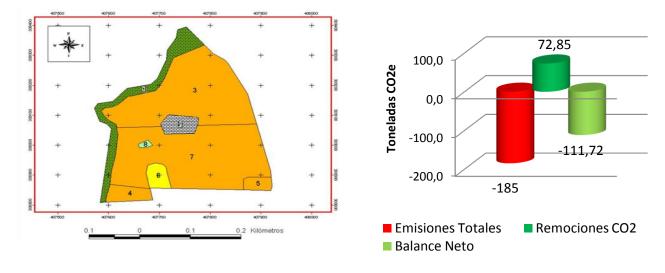


Figura 48. Mapa de uso de suelo y balance de GEI

El balance de la finca es negativo en 111,7 tCO₂e año⁻¹. Si bien la finca presenta una alta carga animal la intensidad de emisiones de la finca es superior a la capacidad de su capital natural para al menos neutralizarlo y queda un déficit de 111,7 tCO₂e año⁻¹. El factor de emisión de las vacas es intenso en emisiones de GEI producto de sus procesos fisiológicos. Además las fincas lecheras son intensivas en el uso de insumos externos los cuales pueden estar afectando negativamente el balance. Desde el punto del capital natural la poca presencia de bosque hace que el balance este apalancado principalmente por el uso de suelo de pasturas el cual cuenta con baja densidad de árboles lo cual hace necesario implementar estrategias reducción de emisiones, mejorar los indicadores productivos de la finca, aplicar descarte de animales por eficiencia productiva y de mejorar el potencial remoción del capital natural.

e. Finca código 213:

Sistema de engorde, hato compuesto por 180 animales (cuadro 64) en pastoreo rotacional. Los usos de suelo (cuadro 63) identificados en la finca fueron: bosque secundario, pastura mejorada baja densidad de árboles (BDA) y pastura mejorada de alta densidad de árboles (ADA).

Cuadro 63. Usos de suelo para compensación de GEI Cuadro 64. Composición del hato

Usos de Suelo	На	Remociones tCO ₂
Bosque secundario	1,02	14,5
Pastura mejorada BDA	73,04	243,7
Pastura mejorada ADA	5,7	28
Total	74,06	258,3

Hato	N° animales
Novillas>2 años	80
Novillos 1-2 años	100

La finca cuenta con una superficie productiva de 88 hectáreas y una carga animal de 1,2 UA/Ha. Las emisiones totales anuales de la finca equivalen a 344 tCO₂e y la capacidad de remoción del capital natural es de 258,3 tCO₂e año⁻¹(Figura 49).

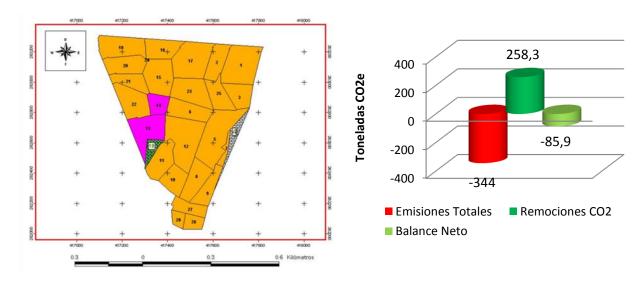


Figura 49. Mapa de uso de suelo y balance de GEI

El balance de la finca es negativo en 85,9 tCO₂e año⁻¹. La finca presenta una baja carga animal y la poca presencia de bosque hace que el balance este apalancado principalmente por el uso de suelo de pasturas el cual cuenta con baja densidad de árboles. Las fincas de engorde son sistemas complejos de analizar desde el punto de vista de balance de GEI ya que están condicionadas a la permanencia de los animales en la finca, esto hace que la variable de Ganancia de Peso Vivo sea determinante para lograr un balance positivo de GEI, además de un diseño diversificado respecto a los usos del suelo.

f. Finca código 216:

Sistema doble propósito, hato compuesto por 54 animales (cuadro 66) en pastoreo rotacional y semi-estabulado. Los usos de suelo (cuadro 65) identificados en la finca fueron: bosque secundario, bosque primario y pastura mejorada baja densidad de árboles (BDA).

Cuadro 65. Usos de suelo para compensación de GEI Cuadro 66. Composición del hato

Usos de Suelo	На	Remociones CO ₂
Bosque ripario	5,7	62,8
Bosque secundario	0,8	11,6
Pastura mejorada BDA	8,0	26,6
Total	14,5	101,0

Hato	N° animales
Vacas paridas	14
Vacas secas	8
Novillas > 2 años	9
Novillos 1-2 años	6
Terneros	6
Terneras	10
Toro	1

La finca cuenta con una superficie 10,6 hectáreas y una carga animal de 2,6 UA/Ha. Las emisiones totales anuales de la finca equivalen a 92,4 tCO₂e y la capacidad de remoción del capital natural es de 100,9 tCO₂e año⁻¹(Figura 50).

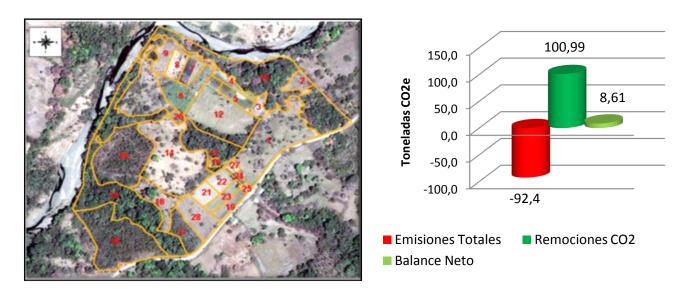


Figura 50. Mapa de uso de suelo y balance de GEI

El balance de la finca es positivo en 8,6 tCO₂e principalmente por el aporte del bosque ripario de la finca. La finca se encuentra en un punto crítico del balance ya que las 8,6 tCO₂e en superávit es proclive a cambios ya sea por incorporación de más animales en la finca o por una mayor intensidad de emisiones en la época seca, qué cómo se menciona en el capital de Gases de Efecto invernadero es la época donde se producen la mayor cantidad de GEI producto por fermentación entérica y residuos sólidos y líquidos de los animales.

6.5. Conclusiones

A partir de los resultados obtenidos se puede concluir que las fincas ganaderas monitoreadas generan un aporte positivo a disminuir la presión al sistema de regulación climática. Esto debido a que el capital natural involucrado, en la mayoría de los casos, remueve mayor cantidad de GEI de los que se emiten en el proceso (dentro de los límites incluidos en este análisis).

Las emisiones aproximadas de la región de Chorotega fueron estimadas en 631.513 tCO2e. Si se consideran solamente el bosque secundario de la zona las remociones anuales equivalen a 558.799,6 tCO2e. Sin embargo, a esto se le debe sumar todo el aporte de los usos de suelo de pastura lo cual hace prever un balance positivo. No obstante, realizando el balance solo con el bosque secundario el balance es negativo en 72.714 tCO2e.

Algunas conclusiones particulares:

- Los sistemas productivos tienen comportamientos distintos en términos de la dinámica de GEI. Esto quedó evidenciado al comparar los tres sistemas dentro del análisis, sistemas doble propósito, lechería y engorde. Los sistemas doble propósito por la diversificación productiva y en la composición del hato tienen menos fricción para obtener un balance positivo, no así los sistemas lecheros y engorde. Los sistemas lecheros son intensivos tanto en la utilización de su capital productivo como también en la demanda por insumos externos. Los sistemas de engorde son de baja carga animal y depende de la ganancia de peso de los animales. Esto hace énfasis en que la mejora en los indicadores productivos de la finca afectan positivamente al balance.
- Los sistemas de información geográfica (SIG) es un instrumento indispensable para este tipo de análisis. La geo-referenciación permite establecer puntos críticos en la utilización del capital natural. Identificando no solo los usos de suelo dentro de las fincas sino el potencial de conectividad, fragmentación o usos de suelo cercanos a nacientes o ríos. Si bien este análisis solo pretendía establecer un balance de GEI, una visión simplista y no holística de rol de los bosques o el aporte de los árboles puede generar distorsión a nivel de paisaje y del potencial de las fincas ganaderas para brindar servicios ecosistémicos. Además, con estos instrumentos se pueden establecer zonas ociosas o de prioridad para implementación de nuevos diseños de cobertura que beneficien la oferta de SE.
- El uso de suelo que aporta de mayor manera a los balances positivos en la fincas es el bosque. Esto tiene grandes implicaciones ya que queda demostrado que bajo sistemas con pasturas de baja densidad de árboles el bosque tiene un rol esencial en el balance de GEI. Todas las fincas analizadas tendrían un balance negativo si el bosque no se toma en consideración como uso de suelo elegible para realizar este análisis.

El balance de GEI puede cambiar la opinión mediática respecto a la ganadería, siendo esta un aporte para la mitigación de GEI con un manejo apropiado e implementando sistemas silvopastoriles. Además, respecto a las discusiones internacionales al papel que cumplen los bosques como estrategia para mitigación de GEI (REDD) se debe considerar replantear la visión de las instituciones en consideración de las áreas de bosques que existen dentro de las fincas ganaderas y la implementación de estrategias para la reducción de emisiones GEI y generar instancias de discusión de cuáles pueden ser las implicancias de brindar este servicios ecosistémico mas allá de las fronteras costarricenses ya que esto puede afectar el logro de la carbono neutralidad nacional, ya que al ser oferentes de este servicio para países extranjeros no podrían ser considerados para la compensaciones de las emisiones nacionales por el problema de la doble contabilidad.

6.6. BIBLIOGRAFIA

- Ávila, G et al, 2001, Almacenamiento, fijación de carbono y valoración de servicios ambientales en sistemas agroforestales en Costa Rica, Agroforestería de las Américas, Costa Rica
- Energetics. 2007. The Reality of Carbon Neutrality. Londres. Inglaterra.
- Esquivel. H.2007. Tree Resources in Traditional Silvopastoral System an Their Impact on Productivity and Nutritive Value of Pastures in the Dry Tropics of Costa Rica. Costa Rica. CATIE.
- Fonseca, W et al, 2005, Acumulación de biomasa y carbono en bosques secundarios y plantaciones forestales en la zona Caribe de Costa Rica, Costa Rica, CATIE,
- Guerra, L. 2007, Construcción de la huella de carbono y logro de carbono neutralidad para el Centro Agronómico Tropical de Investigación y Enseñanza (CATIE)",Costa Rica, CATIE.
- Intergovernmental Panel Climate Change (IPCC). 2007. Cambio Climático. Mitigación.
- Intergovernmental Panel Climate Change IPCC. 2003. Good practice guidance for land use. Land use change and forestry.
- Lemus. G. 2008. Análisis de productividad de pasturas en sistemas silvopastoriles en fincas ganaderas de doble propósito en Esparza. Costa Rica. Costa Rica. CATIE.
- Ruiz, A, 2004, Fijación y Almacenamiento de carbono y Competitividad económica, CATIE, Costa Rica.
- TCNC (The Carbon Neutral Protocol). 2006. A framework for effective action on climate change.
- Zamora, S, 2006, Efecto de los pagos por servicios ambientales en composición, conectividad y el stock de carbono en paisajes ganaderos, Costa Rica, CATIE.

7. CAPITULO 5: VALORACIÓN DE LA HUELLA DE CARBONO A PARTIR DEL ENFOQUE DE ANÁLISIS DE CICLO DE VIDA EN FINCAS GANADERAS EN LA PROVINCIA DE GUANACASTE

7.1. Resumen

La investigación se llevo a cabo para una finca doble propósito tipo de la zona de Chorotega, Costa Rica. Se desarrolló un análisis de huella de carbono a través de la metodología del Ciclo de Vida para los productos finales leche y carne. Se utilizaron dos indicadores funcionales: \sum CO2e(t) / FPCM y \sum CO2e(t) / Kg GPV. El primer indicador para obtener la intensidad de emisiones para la producción de leche y el segundo la intensidad de emisiones para la producción 1 kg de carne. Se utilizaron las ecuaciones del IPCC y el software SIMPRO 7.2 para el análisis de ACV. Los resultados obtenidos indican que para producir 1 litro de leche se emite 1,28 Kg CO2e y para carne 1 Kg de carne 13 Kg CO2e. La frontera productiva de la carbono neutralidad según las tasas de remoción de 5,4 t CO2e evaluadas en la zona demuestran un máximo de 2109 Lit. leche y 207 Kg carne.

7.2. Introducción

Los sistemas ganaderos por su naturaleza están constituidos por encadenamientos de procesos. Las experiencias sobre la aplicación del Análisis del Ciclo de Vida (ACV) en la agricultura nos demuestran que se requiere un enfoque multidisciplinario. No solo se incorporan las actividades dentro de la finca, sino también actividades que se producen fuera de la unidad finca, las cuales tienen otras dinámicas y otros agentes de presión. Desde la fabricación de los insumos, su transporte, aplicación en actividades dentro de la finca, comercialización y luego consumidores. En todos los procesos señalados se originan Gases de Efecto Invernadero (GEI) y por ende presión a los ecosistemas de remoción y secuestro de GEI.

Las emisiones de GEI son consideradas un contaminante, no por la naturaleza de los gases, sino por la saturación observada en la atmosfera. Por contaminación se entiende como la introducción de cualquier sustancia o forma de energía que puede provocar algún desequilibrio irreversible o no en el medio ambiente. En este sentido cambios en la abundancia de los gases de efecto invernadero y aerosoles afectan el balance energético del sistema climático alterando el efecto radiactivo y las propiedades de la superficie terrestre (IPCC 2007).

El principal objetivo de aplicar está herramienta es la obtención de una imagen clara de cuáles son las actividades o procesos de mayor intensidad de emisiones de GEI, y brindar información precisa a los tomadores de decisión, de cuáles pueden ser las intervenciones para reducir las emisiones dentro de los potenciales técnicos, económicos y de mercado⁵.

✓ Potencial Técnico: cantidad en que es posible reducir las emisiones de GEI o mejorar el rendimiento energético utilizando una tecnología o práctica en todas las

⁵ Vease. Fourth Assessment Report of Intergovernmental Panel Climate Change, 2007

aplicaciones en que pueda adoptarse técnicamente, sin consideración de su costo o viabilidad práctica.

- ✓ Potencial económico: parte del potencial técnico para la reducción de GEI o mejoras de rendimiento energético que pueden lograrse en forma rentable, sin obstáculos al mercado.
- ✓ Potencial del mercado: parte del potencial económico para la reducción de las emisiones de GEI o mejoras de rendimientos energéticos que puedan lograrse actualmente en las condiciones de mercado existentes, suponiendo que no se adopten nuevas políticas y medidas.

El análisis de sistemas es la contribución para la toma de decisiones con criterios de acción, de manera comparativa entre procesos y conociendo las consecuencias (Steen 1985). En este sentido el objetivo de esta sección es conocer no solo las emisiones de los procesos, sino también qué consecuencias tiene para el sector un cambio en la intensidad o configuración de los factores productivos.

7.3. Metodología

Por la exhaustividad del análisis se identificó una de las 13 fincas que cumpliera con los criterios representativos de la zona. El sistema de mayor abundancia en las fincas evaluadas es el sistema doble propósito (producción de leche y carne). El objetivo central del análisis es la representación de la cadena productiva del sector en la región desde la confección de los principales insumos hasta la comercialización.

✓ Campo de aplicación del análisis:

El análisis se realizó en sistemas ganaderos desarrollados en la región de Chorotega con una población bovina de 323.722 animales lo que representa aproximadamente el 26% del hato nacional. El tamaño promedio de las fincas ganaderas en la región es de 57 hectáreas lo que explica una amplia participación de pequeños y medianos productores.

La región presenta estacionalidad climática siendo una de las más secas del país. La estación lluviosa es de mayo a octubre y una estación seca de noviembre a abril.

✓ Determinación del horizonte temporal:

La cuantificación de GEI se desarrolló para un periodo de un año bajo el supuesto que el hato no varía a lo largo de este tiempo y se estableció una demanda promedio respecto a los insumos y actividades generadas dentro del sistema durante un año.

Para la construcción de la huella de carbono se establecieron límites biofísicos tanto para la permanencia del de los GEI en la atmósfera como para el horizonte temporal de las tasas de remoción del capital natural como eventual estrategia de compensación de dichos gases.

El gas metano tiene un poder de calentamiento global⁶ de 21 para un horizonte de permanencia de 100 años. El oxido nitroso tiene un poder de calentamiento global de 310 para un horizonte permanencia de 100 años respecto al dióxido de carbono, por lo cual todos los resultados se obtienen como dióxido de carbono equivalente (CO2e).

Las tasas de fijación evaluadas varían dependiendo de la edad del uso de suelo. Hasta la actualidad las tasas de remoción tienen un horizonte temporal promedio de 11 años. Por esta razón los criterios de compensación tienen la limitante de temporalidad respecto a la permanencia y a la dinámica natural del crecimiento de la biomasa que afecta el carbono removido de la atmosfera. Se recomienda en estudios posteriores generar discusión más profunda de las implicancias respecto a los cambios de usos en los sistemas ganaderas con propósitos remoción y secuestro de carbono.

✓ Límites del sistema:

El análisis se realizó a partir de tres alcances de emisiones definidos a partir de la metodología de Análisis del Ciclo de Vida de Emisiones de GEI (PAS) 2050⁷:

- a) Alcance 1 de emisiones: son todas las emisiones directas de GEI de las cuales el propietario tiene control.
- b) Alcance 2 de emisiones: son todas las emisiones indirectas de GEI por las actividades productivas de origen antropogénico.
- c) Alcance 3: son todas las emisiones indirectas relacionadas hacía arriba y hacia abajo a lo largo de la cadena productiva.

Los alcances esta delimitados por las circunstancias comercio a comercio (business to business, en inglés) esto quiere decir que la fase de comercialización del producto final y los procesos de emisiones involucrados en los desechos finales del producto no están incluidos (figura 51).

⁷ Vease PAS 2050:2008 - Specification for the assessment of the life cycle greenhouse gas emissions of goods and services.

⁶ Vease document "Changes in Atmospheric Constituents and in Radiative Forcing" Table.2.14

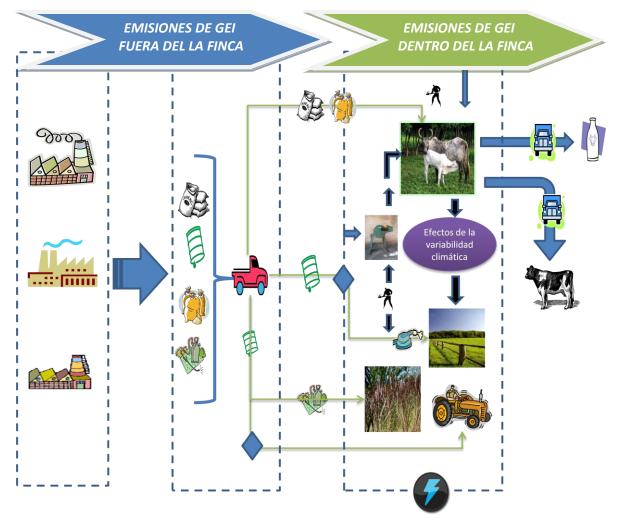


Figura 51. Diagrama de los límites del análisis de ACV con sus actividades y procesos considerados que generan GEI.

La figura 51 muestra 3 bloques dentro de los cuales se observan emisiones de naturaleza de los tres alcances anteriormente mencionados.

✓ Inventario de emisiones en el ACV:

Las emisiones consideradas del **Alcance 1** son las siguientes:

- Emisiones de CO₂ procedentes del transporte de insumos (fertilizantes, herbicidas, diesel para maquinaria, concentrados y medicinas).
- Emisiones de CO₂ procedentes de la utilización de combustibles fósiles para el funcionamiento de las maquinarias dentro de la finca.
- Emisiones de CO₂ procedentes de la utilización de combustibles fósiles para el funcionamiento de bombas de riego.

- Emisiones de N₂O procedentes de la aplicación de fertilizantes sintéticos en forrajes y pasturas.
- Emisiones de CH₄ procedentes de la fermentación entérica.
- Emisiones de CH₄ procedentes del manejo de residuos sólidos y líquidos.
- Emisiones de N₂O procedentes del manejo de residuos sólidos y líquidos.

Las emisiones consideradas del **Alcance 2** son las siguientes:

• Emisiones de CO₂ procedentes de la utilización de combustibles fósiles para la generación de energía eléctrica. Si bien Costa Rica presenta una matriz energética mayoritariamente de fuentes renovables entre el 7 al 8% se genera a partir de combustibles fósiles.

Las emisiones consideradas del **Alcance 3** son las siguientes:

- Emisiones de CO₂ equivalentes procedentes de la fabricación de fertilizantes nitrogenados.
- Emisiones de CO₂ equivalentes procedentes de la fabricación de concentrados fertilizantes nitrogenados.
- Emisiones de CO₂ equivalentes procedentes de la fabricación de herbicidas.

✓ Especificaciones de la calidad de datos:

Los datos se pueden clasificar en: información primaria, secundaria y proveniente de modelaciones.

- Información primaria: se realizaron entrevistas presenciales para establecer los insumos utilizados, la frecuencia de aplicación, la distancia del centro más cercano de compra de insumos, el tipo de maquinaría utilizado en la finca, sistema de riego y la composición del hato.
- Información secundaria: se utilizó información secundaria principalmente para la valoración, ya que no todos los productores tiene control de sus gastos mensuales, por lo tanto se utilizaron precios de referencia de los insumos utilizados.
- Modelación: los factores de emisión provienen de la metodología 1, 2 y 3 del IPCC, además se utilizarse el software SIMAPRO 7.2 para estimar las emisiones del alcance 3. SIMPRO utiliza la base de datos ecoinvent⁸ 2.1. el cual incluye 4000 casos de análisis de ACV. Para las tasas de remoción se utilizaron las obtenidas del capítulo de carbono del presente documento.
- ✓ Bienes de capital y bases económicas realizadas en el análisis:

Los bienes de capital fueron excluidos en el análisis. Los bienes de capital son por ejemplo: infraestructura, maquinaria, vehículos y animales. Si bien se consideraron las emisiones de

۷.

⁸ Vease http://www.ecoinvent.org/

la mayoría de los bienes de capitales, no se consideraron las emisiones por la fabricación de los mismos. En algunos ACV se consideran las emisiones provenientes de los proceso de fabricación o construcción sin embargo por presentar relevancia para las unidades funcionales utilizadas en el estudio fueron excluidas del análisis.

En términos contables se generaron los costos por unidad de insumos (cuadro 67).

Cuadro 67. Costos por unidad de insumo, métricas y frecuencia

Item	Precio/unitario	Cantidad anual	Costo anual
Maquinaria (Diesel)	484	1307 Lit.	632588
Vehículo (Gasolina)	558	430 Lit.	239940
Electricidad	61,3	1956 Kw	119902,8
Transporte insumos	484	181 Lit.	87604
Riego (Diesel)	484	372 Lit.	180048
Fertilizantes nitrogenados	565,2	276 Kg	155995,2
Urea	309	54 Kg	16686
Herbicidas	5000	200 Lit.	1000000
Concentrados	240	1080 Kg	259200

Para la valoración se divide en dos fases: 1) los ingresos hipotéticos por reducción de emisiones de GEI y 2) los ingresos hipotéticos por la comercialización de bonos de carbono o la eventual participación en un sistema REDD. Además establecer en términos de monetarios el costo de 1 Kg de CO₂e emitido por componente.

✓ Unidades funcionales, ponderaciones y equivalencias:

Las unidades funcionales son aquellos indicadores que explican la presión ambiental del proceso en términos de GEI. Se utilizaron los siguientes indicadores funcionales:

Ecuación

 $Kg CO_2e/Lit Leche = \sum CO_{2e}(t) / FPCM$

Donde:

Kg CO₂e/Lit Leche = emisiones Kg CO₂e por cada litro de leche producido.

 $\sum CO_{2e}(t)$ = sumatoria de las emisiones del alcance 1, 2 y 3.

FPCM = contenido de grasa y proteína corregido por la producción total de leche (FPCM, siglas en ingles.

Este indicador funcional permite medir la cantidad de GEI que se emiten para producir 1 litro de leche. El indicador FPCM corresponde al contenido de grasa y proteína corregido por la producción total de leche (FPCM, siglas en inglés). Este indicador ha sido utilizado por Van der Werf 2005; Van Kernebeeck et al 2008; Van Calker 2003 en aplicaciones de ACV y es considerado el más apropiado para ponderar la calidad de la leche entre sistemas para este tipo de análisis.

La ecuación para calcular FPCM es la siguiente:

Ecuación

Kg GPCL = (0.337+0.116*G+0.06*P)*L

Donde:

GPLC = grasa y proteína corregida por la producción de leche

G = porcentaje de grasa en la leche

P = porcentaje de proteína en la leche

L = total de leche producida por todas las vacas de la fincas al año

Por ser una finca doble propósito también se utilizó un indicador funcional para medir la cantidad de GEI que se emiten para producir 1 kilogramo de carne expresado en Kg y la ganancia de peso de los terneros durante un año expresada en Kg.

Ecuación

 $Kg CO_2e/1 Kg carne = \sum CO_{2e}(t) / GP_{(a\tilde{n}o)}$

Donde:

GP (año) = ganancia de peso vivo a lo largo del año (Kg).

 $\sum CO_{2e}(t)$ = sumatoria de las emisiones del alcance 1, 2 y 3.

(t) = hato incluido dentro del análisis.

Respecto a la ganancia de peso de los novillos (asumiendo un peso inicial entre 190 - 200 Kg) la ecuación es la siguiente:

Ecuación:

$$GP = \frac{PTA - PI}{Dias}$$

Donde:

GP= ganancia diaria de peso (Kg ternero⁻¹).

PTA= peso total del animal (Kg ternero⁻¹).

PI= peso inicial.

Días= N días.

Para las emisiones de GEI tanto fuera como dentro del sistema se debieron realizar ponderaciones ya que cada componente participa de manera distinta en la producción de leche y carne.

Para leche se utilizó la siguiente ecuación:

Ecuación:

$$\sum_{c} CO_{2e}(t) = CO_{2e}(v1) + CO_{2e}(n) + (CO_{2e}(vs;n \ge 2) *5\%) + (CO_{2e}(i)*50\%)$$

Donde:

 $CO_{2e}(vl)$ = emisiones de GEI de las vacas lecheras.

 $CO_{2e}(n)$ = emisiones de GEI de los novillos.

 $(CO_{2e}(vs;n\geq 2) = emisiones de GEI de las vacas secas y las novillas mayores a 2 años.$

CO_{2e} (i) = emisiones de GEI de todos los insumos utilizados por el sistema ganadero.

El 50% de los insumos son ponderados a la producción de leche y el 50% restante para la producción de carne.

Para la producción de carne se utilizó la siguiente ecuación:

Ecuación:

$$\sum CO_{2e}(t) = (CO_{2e}(n) + (CO_{2e}(i)*50\%))/n$$

Donde:

 $CO_{2e}(n)$ = emisiones de GEI de los novillos.

CO_{2e} (i) = emisiones de GEI de todos los insumos utilizados por el sistema ganadero.

N = número de novillos en la finca.

7.4. Resultados

Los resultados se presentan respecto a las emisiones anuales de GEI de cada uno de los alcances (1,2 y 3) para finalmente realizar una valoración de la huella de carbono de la producción de leche y carne.

✓ Caracterización inicial de la finca:

La superficie de la finca es de 30 hectáreas ubicada a una distancia de 12 Km de la ciudad más cercana. Está compuesta por 78 animales (cuadro 68) y los registros productivos muestran entre 8 a 10 litros de leche/animal/día y una ganancia de peso diaria entre los 0,45 – 0,5 Kg. Los cálculos de digestibilidad ubican a la dieta entre los 50 a 52% DIVMS y de Proteína Cruda (PC) en 7% PC.

Cuadro 68. Costos por unidad de insumo, métricas y frecuencia

Vacas lecheras	16
Vacas secas o de cría	12
Novillas + 2 años	8
Hembras 1-2 años	8
Novillos 2-3 años	10
Novillos 1-2 años	10

Crías sin destetar, de 0-1 año	12
Toros reproductores	2

✓ Emisiones de GEI del alcance 1:

Las emisiones del alcance 1 se dividen en emisiones originadas por las actividades de la finca (figura 52) y las emisiones producto de los procesos fisiológicos de los animales (figura 53).

Figura 52. Emisiones de GEI producto de actividades en finca

Figura 53. Emisiones de GEI por procesos fisiológicos de los animales

La fermentación entérica es el proceso que genera la mayor intensidad de emisiones 107 tCO₂e de los procesos fisiológicos de los animales. Las emisiones por la utilización de combustibles fósiles 6,2 tCO₂e supera a las emisiones por nitrificación producto de la aplicación de fertilizantes nitrogenados 217 Kg CO₂e.

✓ Emisiones de GEI del alcance 2:

Emisiones de alcance 2 solo identificaron las emisiones provenientes del consumo de energía eléctrica (figura 54). El sistema de interconexión eléctrica de Costa Rica es en su mayor parte proveniente de fuentes renovables, energía hidroeléctrica (75%), geotérmica (13,7%), eólicas (3%), biológicas (0,2%) y 8% restante corresponde a hidrocarburos (ICE 2007). Aún no se ha determinado un factor de emisión oficial para el cálculo de emisiones proveniente por este proceso, sin embargo el IPCC recomienda utilizar un factor de emisión de 1,3 tCO₂ / MW⁹.

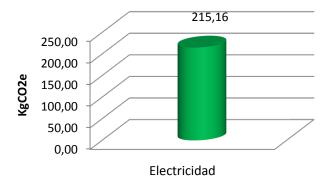


Figura 54. Emisiones de GEI por el proceso de generación eléctrica

✓ Emisiones de GEI del alcance 3:

Las emisiones de GEI del alcance 3 representan la amplitud e integralidad del análisis. La intención principal de realizar el cálculo de emisiones a este nivel es para conocer donde se encuentran las emisiones de menor fricción para ser evitadas y donde se logran cambios sustanciales en los indicadores funcionales.

Es importante señalar que el punto de observación del análisis es presentar la cadena productiva en la producción de leche y carne. Por lo tanto la fabricación de insumos presenta un componente de importancia dentro las emisiones agregadas del producto. Para este caso en particular se consideraron las emisiones para fabricación de herbicida, fertilizante nitrogenado y concentrado (figura 55).

Informe Final Estudio Balance de Gases Región Chorotega Realizado por Programa GAMMA del CATIE

⁹ Vease IPCC documento "Tool to calculate baseline, project and/or leakage emissions from electricity consumption"

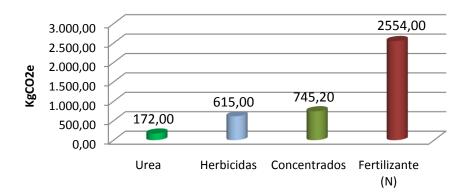


Figura 55. Emisiones de GEI por la fabricación de insumos utilizados en la producción ganadera

Los procesos evaluados consideran el análisis de emisiones de GEI respecto a la cadena de producción de cada uno de los productos en más de 8 países de la Comunidad Europea. A continuación se presentan los procesos de cada uno de los productos evaluados.

La figuras (56, 57, 57 y 58) muestran los procesos (cuadrados en gris) y las conexiones (líneas rojas) y la ponderación de emisiones de cada uno de los procesos en el producto final para su fabricación.

• Para la fabricación de fertilizantes nitrogenados:

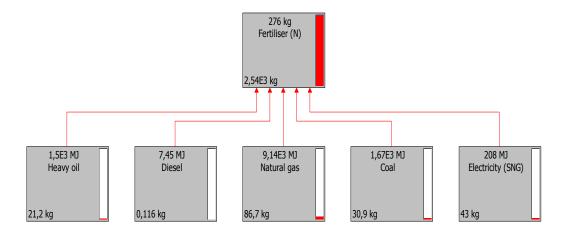


Figura 56. Procesos involucrados en la producción de fertilizantes nitrogenados en las principales plantas de la Comunidad Europea y sus emisiones de GEI.

• Para la fabricación de fertilizantes Urea:

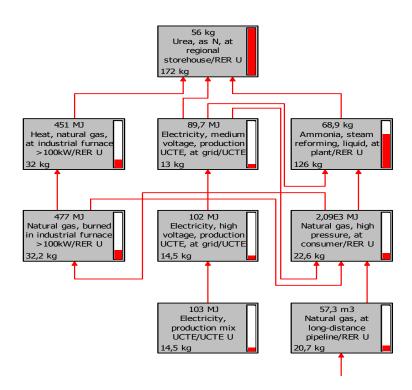


Figura 57. Procesos involucrados en la producción de Urea en las principales plantas de la Comunidad Europea y sus emisiones de GEI.

Informe Final Estudio Balance de Gases Región Chorotega Realizado por Programa GAMMA del CATIE
154

• Para la fabricación de concentrados (soya y sorgo):

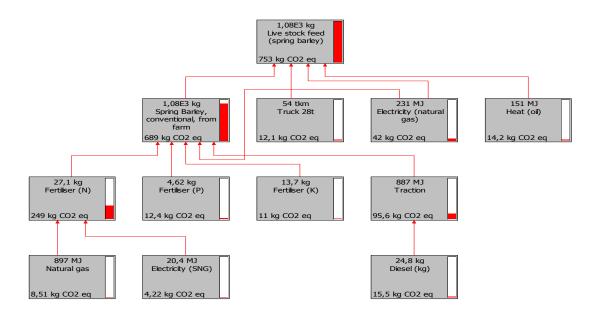


Figura 58. Procesos involucrados en la producción de concentrados en las principales plantas de la Comunidad Europea y sus emisiones de GEI.

En el caso de los concentrados se puede apreciar que existen cultivos involucrados tan solo para la alimentación ganadera, las emisiones por el cambio de uso de suelo no fueron considerados en este análisis.

• Para la fabricación de herbicida:

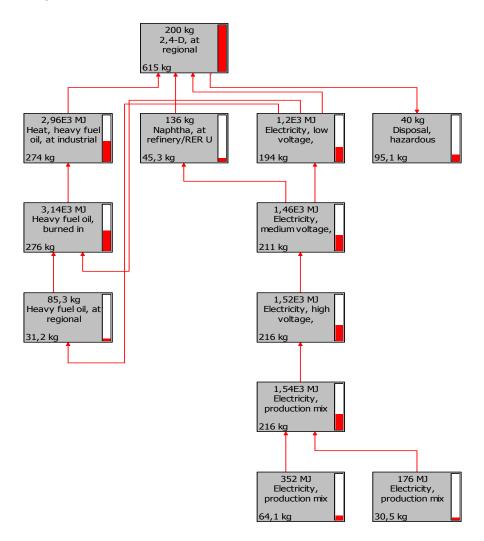


Figura 59. Procesos involucrados en la producción de herbicidas en las principales plantas de la Comunidad Europea y sus emisiones de GEI.

✓ Emisiones de GEI por unidad de producto:

La intensidad de emisiones por unidad de producto (figura 60) representan la cantidad de emisiones de GEI emitidas para producir 1 litro de leche o 1 kilogramo de carne bajo las condiciones de producción particulares de una finca doble propósito en la región de Chorotega.

Los valores ahí representados son difíciles de comparar con otros estudios por ejemplo: Holanda se cuantificó 1,6 Kg CO₂e/ Kg FPCM (Van Calker 2003) promedio nacional, en la provincia de Britania, Francia se cuantificó 0,88 Kg CO₂e/ Kg leche (Van der Werf 2005),

en Ropar, India se obtuvo 1,63 Kg CO₂e/ Kg FPCM (Van Kernebeeck et al 2008), en Irlanda se cuantificó 1,5 Kg CO₂e/ Kg ECM¹⁰ (Casey 2005), en Reino Unido se cuantificó 1,32 Kg CO₂e/Kg leche y en Dinamarca 1,06 Kg CO₂e/Kg leche (Dalgaard 2004).

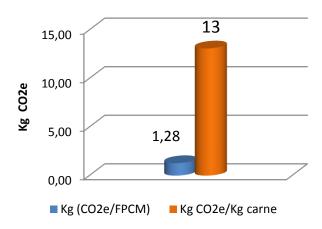


Figura 60. Emisiones de GEI por unidad final del producto para una finca doble propósito.

Para producir 1 litro de leche se requiere emitir a la atmosfera 1,28 Kg de CO₂e, como se menciona anteriormente las comparaciones son complejas y bajo gran cantidad de supuestos. Por ejemplo una de las variables que a lo largo de la investigación tiene una incidencia alta en la intensidad de emisiones es el clima, época seca y lluviosa, estas condiciones tropicales no son comparables a los estudios mencionados anteriormente. Si bien los resultados están dentro del rango de las investigaciones realizadas en otros países no es posible generar comparaciones sin antes expresar los supuestos.

Para producir 1 Kg de carne se requiere emitir a la atmosfera 13 Kg de CO₂e. La intensidad de emisiones está directamente relacionado a la GPV del animal, las fincas evaluadas reportaron ganancias de peso vivo entre 0,4 a 0,6 Kg/ día. La modelación se realizó con 0,5 Kg/día, a esta ganancia, sí el animal entraba a engorde con un peso de 210 Kg al cabo de un año lograba 400 Kg, peso comercial reportado en el sector cárnico. Sin embargo bajo los 0,5 Kg el costo por alcanzar el peso comercial en términos de GEI aumenta, por lo cual la menor permanencia del animal en la finca permite disminuir la intensidad de emisiones por unidad de producto.

✓ Valoración de la huella de carbono

Los procesos de adaptación y mitigación de Cambio Climático enfrentan el problema económico de los usos alternativos o costo de oportunidad. El problema económico se origina en la necesidad de decidir el mejor uso social de los recursos naturales (Vásquez 2007). La definición de "valor" se fundamenta a partir de la pregunta ¿Cuál es la mejor alternativa?. La valoración de una alternativa no es determinante a su valor monetario o

¹⁰ Energy Corrected by Milk

precio de mercado, sino a una respuesta reflexiva de las orientaciones se desarrollo que se propone un país, región o comunidad en el manejo de sus recursos naturales.

El consumo promedio per-capita de leche en Costa Rica es de 188,51 Kg anuales esto significa que las emisiones aproximadas de GEI producto del consumo de leche ascienden a 241,2 Kg CO₂e por persona anualmente en Costa Rica. Dentro de una política de carbono neutralidad la pregunta es ¿Cuál es la capacidad del capital natural de los sistemas ganaderos para compensar el consumo de leche y/o carne? (figura 61).

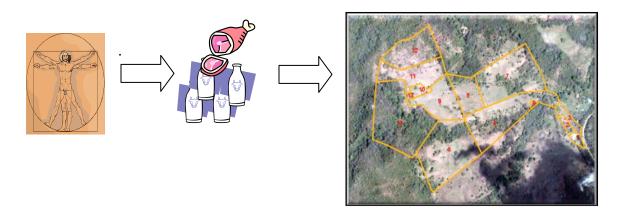


Figura 61. Ciclo de la huella de carbono bajo el contexto de la carbono neutralidad.

De acuerdo a los resultados obtenidos en el capítulo sobre la cuantificación de carbono en sistemas ganaderos, la tasa ponderada por uso de suelo de remoción de carbono esta en el rango entre 5 a 5,4 tCO₂e/ ha en la región de chorotega, esto permitiría neutralizar las emisiones originadas por el consumo de leche de 22 personas, esto quiere decir que una finca en promedio de 40 hectáreas (en bosque y pasturas) permitiría neutralizar las emisiones de 880 personas anualmente por consumo de leche.

El consumo de carne per-capita en Costa Rica es de aproximadamente de 17 Kg anuales esto significa que las emisiones GEI provenientes del consumo de carne por persona es de 221,2 Kg CO₂e. En función de la tasa de remoción expresada anteriormente 1 Ha en sistemas ganaderos permite neutralizar las emisiones por el consumo de carne de 25 personas anualmente y de 1000 personas para una finca de 40 hectáreas.

A partir de los resultados obtenidos de la huella de carbono para leche y carne considerando *Business As Usual* (sin cambios tecnológicos ni de manejos), se presentan los límites del capital natural para mantener el sistema productivo carbono neutral (figura 62).

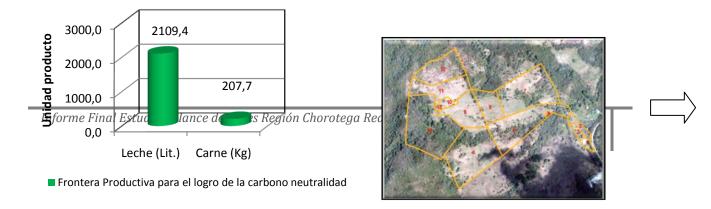


Figura 62. Limites en la curva de producción para mantener el logro de la carbono neutralidad en fincas ganaderas doble propósitos en la región de Chorotega.

Asumiendo que la tasa de remoción anual es de 5400 Kg CO₂e por lo cual dentro del presupuesto de carbono de la finca logra neutralizar por hectárea 2109 litros de leche y 207 Kg de carne por año, en las condiciones observadas en la región de Chorotega.

Si la valoración se analiza respecto al gasto de Kg CO₂e por dólar ingresado en la economía (cuadro 68).

Cuadro 68. Intensidad de emisiones de GEI por US de gasto en el sistema productivo

Actividades y procesos	Gasto anual (US)	Kg CO ₂ e	Kg CO ₂ e/US
Maquinaria (Diesel)	1216,15	3.697,71	3,04
Vehículo finca (Gasolina)	461,54	1.002,15	2,17
Transporte insumos	168,46	512,21	3,04
Bomba de Riego (Diesel)	346,15	1.052,48	3,04
fertilizantes nitrogenados	299,97	2771,00	9,24
Electricidad	229,45	215	0,94
Urea	32,09	172,00	5,36
Herbicidas	809,62	615,00	0,76
Concentrados	498,46	745,20	1,50

Los fertilizantes nitrogenados y la Urea son las actividades que presentan la mayor intensidad de emisiones por dólar de gasto en el sistema. Esto quiere decir que una posibilidad de disminuir la intensidad de emisiones es buscar bienes sustitutos que aminoren la intensidad de GEI en esta actividad.

7.5. Conclusiones

Para el análisis de la huella de carbono para la leche y la carne en sistemas ganaderos es necesario utilizar la metodología del Análisis del Ciclo de Vida del producto. Como se ha observado a lo largo de este capítulo la huella de carbono está compuesta por cientos de procesos los que inciden en el resultado final Kg CO₂e/ unidad de producto. Las principales conclusiones:

- El proceso que genera la mayor cantidad de emisiones de GEI es la fermentación
- entérica (figura 63).

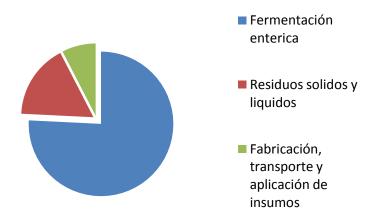


Figura 63. Distribución de las emisiones a lo largo del análisis.

Sin embargo las emisiones por fermentación entérica es una externalidad natural de la actividad ganadera, por lo tanto no son evitables por completo, en cambio las emisiones por residuos sólidos y líquidos pueden ser vistas dentro del sistema como un subproducto. La utilización de biodigestores puede causar un doble efecto, por un lado reducir las emisiones por este proceso y por otro disminuir la dependencia energética del sistema.

- La matriz energética del sistema ganadero evaluado es altamente dependiente de energías fósiles. Sin tomar en cuenta las emisiones por procesos de los animales las emisiones provenientes del consumo de combustibles fósiles son gran parte de las emisiones totales de insumos (7,3 t CO₂e, en todos los alcances (1,2 3). Esto hace necesario replantear la posibilidad de generar otros tipos de fuentes energéticas, que permitan disminuir las emisiones por este componente. Por ejemplo evaluar la posibilidad de incorporar cultivos bioenergéticas dentro de la finca. Las fincas ganaderas pueden convertirse en oferentes de esta materia prima utilizando estos cultivos en las cercas vivas o en lugares donde los animales no afecten el cultivo negativamente.
- El capital natural tiene un rol esencial en la carbono neutralidad de la leche y carne. Los ingresos brutos por Ha en el contexto de la carbono neutralidad son aproximadamente 1144 US, con precios de referencia de 230 colones/Lit. leche y 530 colones/Kg carne. Sin embargo, esta valoración no incluye los valores agregados de comercializar productos ganaderos *zero emisiones*, los cuales deberían aumentar el ingreso bruto por Ha.
- Respecto a la primera estrategia con un precio estimado de carbono bajo el mercado voluntario (4,7 US\$ por tonelada de CO₂e, *Carbon Positive Organization*) la transición de una pastura natural sin árboles a una pastura mejorada con alta densidad de árboles significaría entre 8 a 12 US/ha. Si a esto le agregamos una reducción del 10% las emisiones por fermentación entérica a nivel regional significaría ingresos por 152.149 US\$. Además la incorporación de biodigestores

para reducir el 40% de las emisiones por manejo de residuos sólidos y líquidos significaría 1,1 millones de US\$.

- La estrategia REDD tiene potencial respecto a la gestión sostenible de las áreas de bosque de cual se podría inferir un valor de 836 US\$ por hectárea de bosque en función del Stock expresado en el capítulo de carbono en este documento. Sin embargo que el precio de referencia por tonelada de carbono varía a lo largo del tiempo. La valoración se desarrolló con un precio de referencia de 4,7 US\$ por tonelada de CO₂e, *Carbon Positive Organization*.
- El dilema en la toma de decisiones a nivel gubernamental es el costo de oportunidad de entrar a diversos mecanismos de mitigación de GEI. Si el sector ganadero decide entrar a una estrategia REDD los bosques ya no pueden ser considerados para el logro de la carbono neutralidad de sus productos finales (leche y carne), ya que el presupuesto de carbono de la finca ya está comprometido y al incluirlo se estaría incurriendo en doble contabilidad. Esto mismo sucede al entrar en el mercado de bonos de carbono voluntarios ya que existiría un costo de oportunidad de utilizar los excedentes del presupuesto de carbono para transformarlos en bonos o aumentar la frontera de producción de productos finales (leche y carne) carbono neutral.

La última conclusión apunta a la necesidad de utilizar la teoría de sistemas para buscar reducción de emisiones y potencializar el servicio ecosistémico de remoción de la finca, sin embargo el sector o los productores deberán elegir cuál de las alternativas se acerca más los intereses de los productores y el interés político del sector.

7.6. BIBLIOGRAFÍA

- Animal Sciences Group. 2007. Feeding strategies to reduce methane loss in cattle. Wageningen University. Holanda. 54p
- Carbon Trust. 2007. Carbon Footprinting. Inglaterra. 15p
- Carbon Trust. Sf. Footprint Measurement Methology. Inglaterra. 23p
- Casey, JW; Holden, N. 2005. Analysis of greenhouse gas emissions from the average Irish milk production system. AGRICULTURAL SYSTEMS. Vol 86. 97-114p
- Casey, JW; Holden, N. 2005. The relationship between greenhouse gas emissions and intensity of milk production in Ireland. JOURNAL OF ENVIRONMENTAL QUALITY. Vol 34. 429-436p
- Casey, JW; Holden, N. 2006. Greenhouse gas emissions from conventional, agrienvironmental scheme, and organic Irish suckler beef units. JOURNAL OF ENVIRONMENTAL QUALITY. Vol 35. 231-239p
- Casey, JW; Holden, N. 2006. Quantificaction of GHG emissions from sucker-beef production in Ireland. AGRICULTURAL SYSTEMS. Vol 90. 79-98p
- Dalgaard, R; Halberg, N. 2004. LCA of Danish milk- system expansión in practice. DIAS Report, Animal Husbandry. Vol 61. 285-288p
- Gerber, P. 2008. Climate Change the heat i son?. Edinburgh
- Gill, M; Smith, P. Mitigating climate change: the role of livestock in agricultura. Proceedings International Conference. 2008. Livestock and Global Climate Change. 29-30p.
- Halberg, N; Van der Werf, HMG; Basset-Mens, C; Dalgaard, R; De Boer, IJM. 2005. Environmental assessment tools for the evaluation and improvement of European livestock production systems. LIVESTOCK PRODUCTION SCIENCE. Vol 96. 33-50p
- Havlikova, M; Kroeze, C; Huilbregts, MAJ. 2008. Environmental and health impact by dairy cattle livestock and manure management in the Czech Republic. Wageningen University. Holanda. 11p
- Hegarly R. 2001. Greenhouse gas emissions from the australian livestock sector. Australian Greenhouse Office. 35p
- Imke, J.M de Boer. 2002. Environmental impact assessment of conventional and organic milk production. Livestock production science. Netherland. 9p

- Mourad. A; Garcia, E; Vilela, G; Von Zuben. 2008. Environmental effects from a recycling rate increase of cardboard of aseptic packaging system for milk using life cycle approach. INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT. Vol 13. 140-146
- Nielsen, P; Dalgaar, R; Korsbak, A; Pettersson, D. 2008. Environmental assessment of digestibility impovement factors applied in animal production. JOURNAL OF LIFE CYCLE ASSESSMENT. Vol 13. 49-56p
- O'Mara, F; Beauchemin, K; Kreuzer, M; McAllister, T. Reduction of greenhouse gas emissions of ruminants through nutritional strategies. Proceedings International Conference. 2008. Livestock and Global Climate Change. 40-44p
- Proyecto Silvopastoril GEF Banco Mundial. 2005. Enfoques Silvopastoriles Integrados para el manejo de Ecosistemas. Costa Rica. 83p
- Rowlinson, P. Adapting livestock production systems to climate change temperate zones. Proceedings International Conference. 2008. Livestock and Global Climate Change. 61-63p
- Steinfeld, H; Hoffman, I. Livestock greenhouse gases and global climate change. Proceedings International Conference. 2008. Livestock and Global Climate Change. 8-9p
- Tamminga, S. 2007. Feeding strategies to reduce methane loss in cattle. Animal Sciences Group. Netherland. 58p
- Van Calker, K.J. sf. An LP-model to analyse economic and ecological sustainability in Dutch dairy farming. International farm management congress 2003. 10p
- Van Kernebeek H; Gerber, P. 2008. Environmental Life Cycle Analysis of milk production in Ropar, India. Food and Agriculture Oganization of the United Nations. 34p
- Venetoulis, J; Talberth, J. 2005. Ecological footprint of nations. Redefining Progress. California. 16p
- World Resources Institute. 2006. The Greenhouses Gas Protocol, Estados Unidos..132p Montenegro, J; Abarca, S. 2001. Importancia del sector agropecuario costarricense en la mitigación del calentamiento global. Ministerio de Agricultura y Ganadería. Costa Rica.135p

8. CAPITULO 6: POTENCIAL DE PROVISIÓN DE SERVICIOS ECOSISTÉMICOS EN PAISAJES GANADEROS DE LA REGIÓN CHOROTEGA

8.1. Resumen

Una de las principales actividades económicas de la región Chorotega es la ganadería, la cual ocupa gran parte de su territorio. En el presente capítulo se explora el potencial que tienen los paisajes ganaderos en la región Chorotega de proveer servicios ecosistémicos referidos a Biodiversidad, agua, carbono y belleza escénica bajo sistemas ganaderos sostenibles y la implementación de buenas prácticas de manejo. Dicho análisis involucró el uso de sistemas de información de geográfica, entrevistas con técnicos y productores, visitas de campo y revisión de literatura. El uso de sistemas de información geográfica (SIG), incluyó el uso de diferentes coberturas ligadas a base de datos, así como el uso de valores ponderados para cada uno de las mismas. El resultado de este análisis generó diferentes mapas para cada uno de los diferentes servicios evaluados y la identificaron de zonas ganaderas con mayor potencial. Los resultados evidencian que debido a la ubicación y densidad de fincas ganaderas en áreas de importancia para la biodiversidad, agua, carbono y belleza escénica, existen cantones con mayor potencial y prioridad para la provisión de servicios ecosistémicos.

8.2. Introducción

La región de Chorotega, es una región altamente fragmentada, donde la principal actividad es la ganadera, la cual por su manejo ha ocasionado un deterioro del medio ambiente generada por principalmente por el sobrepastoreo, sin embargo el buen manejo de las áreas de pasturas mediante técnicas amigables con el ambiente puede ayudar a proveer servicios ecosistemicos de manera eficiente (Harvey et al 2008). Los árboles dispersos en potreros y cercas vivas contribuyen a mejorar la fertilidad del suelo, reducir la erosión, proteger las fuentes da agua, contribuyen con la fijación de carbono en con lo que ayudan a regular el clima y contribuyen a la conectividad y genera ambientes propicios para la conservación de la biodiversidad (Beer et al. 2003, Tobar et al. 2009).

Según la evaluación de Ecosistemas del milenio Millennium Ecosystem Assessment (MEA) los servicios ecosistémicos (SE) se definen como los beneficios directos o indirectos que reciben los seres humanos de las interacciones que se producen en los ecosistemas (MEA 2005). Estos pueden dividirse en cuatro categorías: a) Soporte: aquellos servicios fundamentales para el sustento de la vida como formación de suelo, ciclaje de nutrientes y conservación de la biodiversidad; b) Provisión: bienes que satisfacen

necesidades humanas como agua, alimento, madera, fibras, leña o recursos genéticos para el desarrollo de otros bienes; c) Regulación: tanto climática, del aire, del agua, de las plagas y enfermedades en los cultivos, de la polinización, dispersando semillas o regulando disturbios y riesgos; y d) Culturales: serían aquellos relacionados con el raciocinio y espíritu humano como la belleza escénica de un paisaje, la recreación y el ecoturismo, así como aspectos de orden religioso o místico.

En Costa Rica, los SE de conservación de la biodiversidad, regulación hídrica, mantenimiento de belleza escénica y fijación de carbono son considerados de suma importancia para el bienestar de las personas y la generación de ingresos, contando incluso con un respaldo legal (Ley Forestal la Ley Forestal de Costa Rica No.7575 de 1996) donde se dictamina los servicios ambientales que se deben compensar, las actividades de uso del suelo que aseguran su provisión así como el mecanismo financiero para la sostenibilidad del pago.

Es necesario tener en cuenta que si bien todos los ecosistemas son potencialmente proveedoras de SE, con base en criterios técnicos y políticos solo algunas áreas son consideradas de prioridad. Esta prioridad pueden ser otorgada teniendo en cuenta la provisión de SE que provee una determinada zona y/o al riesgo que puedan ser perdidos.

Si bien, la Región Chorotega cuenta con una gran riqueza natural e importantes sitios turísticos, cabe recalcar que su paisaje está dominado por la actividad ganadera. Ante este contexto, el presente estudio tiene como objetivo estimar el Potencial de provisión de Servicios ecosistémicos (Agua, Biodiversidad, Carbono y Belleza escénica) en territorios dominados por la ganadería en la Región Chorotega.

8.3. Metodología

El desarrollo del presente análisis ha contemplado 02 fases: i) una de campo, en la cual se hizo un recorrido de los cantones de la región que involucró reuniones con técnicos y productores; y ii) una fase de análisis espacial con base en sistemas de información geográfica en la cual se asignó valores de prioridad en cada uno de servicios ecosistémicos evaluados, que bajo formas de mapas11, fueron combinados y analizados con la finalidad de identificar áreas prioritarias en territorios ganaderos con un alto potencial de provisión de Servicios ecosistémicos (Figura 64).

El Potencial de provisión de servicios ambientales (SA) se evaluó para biodiversidad, recurso hídrico, fijación de carbono y belleza escénica.

¹¹ Para este estudio se hizo uso de mapas del atlas virtual de Costa Rica 2008

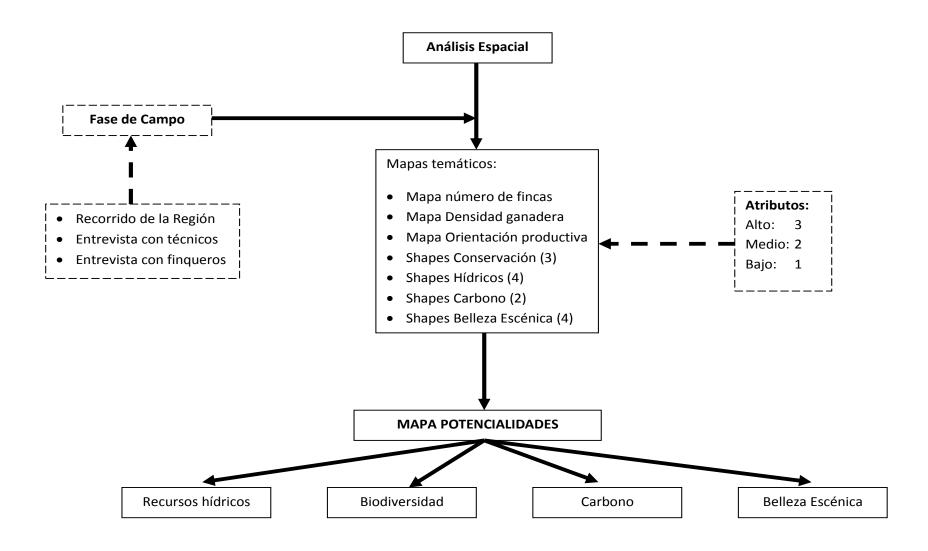


Figura 64. Esquema Metodológico del análisis espacial para estimar el Potencial de provisión de Servicios ecosistémicos (Agua, Biodiversidad, Carbono y Belleza escénica) en territorios dominados por la ganadería en la Región Chorotega

8.4. Ganadería en la Región Chorotega

Específicamente en la Región Chorotega, según información del Censo Ganadero del año 2000, existen 377.625 hectáreas de terreno ocupadas por la actividad ganadera, lo que representa un 38% del territorio regional. La población bovina es de 323.722 con la participación de 6.625 familias productoras, de las cuales el 70% se dedica a la producción de ganado de carne, el 22% a doble propósito y un 8% a producción de leche. El tamaño promedio de las fincas ganaderas de la región es de 57 hectáreas y el 81 por ciento de las unidades productivas son menores de 80 hectáreas (Censo ganadero, 2000), lo cual indica claramente la amplia participación de pequeños y medianos productores y productoras en esta actividad (MAG 2007).

Si bien la ganadería es una actividad generalizada en toda la región, el número y densidad de fincas, así como su orientación productiva varían considerablemente entre sus cantones, existiendo puntos de alta, media y baja densidad poblacional ganadera en todo su territorio (Figuras 65 y 66). Es importante resaltar que no siempre la densidad de fincas ganaderas en los cantones está correlacionada con la densidad de animales en los mismos.



Figura 65. Mapa distribución de fincas (a) y orientación productiva (b) de fincas ganaderas en la Región Chorotega

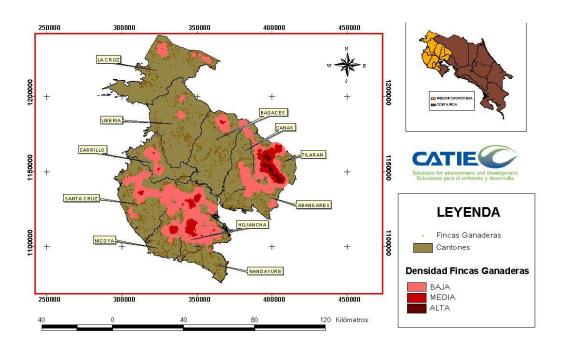


Figura 66. Mapa Densidad de Fincas Ganaderas en la Región Chorotega

8.5. Servicios Ecosistémicos.

En los últimos años, los SE han sido afectados por el aprovechamiento irracional de los ecosistemas y más recientemente, por el cambio climático, los cuales influyen mucho en su provisión. La región de Chorotega no ha escapado a esta realidad, pues el cambio de uso de la tierra, la masificación de malas prácticas productivas y la variabilidad climática vienen mermado y degradando el potencial de provisión de SE por parte de los ecosistemas presentes en la región. No obstante, evidencias recientes demuestran que en algunos casos, dependiendo de la forma de manejo, los ecosistemas intervenidos por el hombre también pueden ofrecer una variedad de SE (Gobbi et ál 2005).

En el presente estudio se analizó el potencial de los servicios ecosistémicos de Biodiversidad, Agua, Fijación de Carbono y Belleza Escénica en territorios ganaderos, para lo cual se identificaron los "hotspot¹²" de importancia ecosistémica y desarrollo ganadero. La lógica es darse una transición en estos "hotspot" de una ganadería convencional degradativa a una ganadería amigable con el ambiente, la provisión de servicios ecosistémicos mejorará.

Para lo cual, los diferentes atributos de Biodiversidad. Agua, Fijación de Carbono y Belleza escénica fueron confrontados con los atributos de ganadería de la Región

Informe Final Estudio Balance de Gases Región Chorotega Realizado por Programa GAMMA del CATIE

¹² Bajo este contexto Hotspot se entienden como zonas de de alto potencial para la provisión de servicios ecosistémicos y altamente vulnerable a la actividad ganadera.

Chorotega (Figura 67). En el caso de la ganadería la cual fue la plataforma del análisis se dio un valor basado en el grado de impacto en el territorio. Así tenemos que para la Orientación productiva los puntajes fueron: Carne: 3, Doble propósito: 2 y Leche: 1; y para el grado de Densidad de fincas el puntaje fue para Alta: 3, para Media: 2 y para Baja: 1.

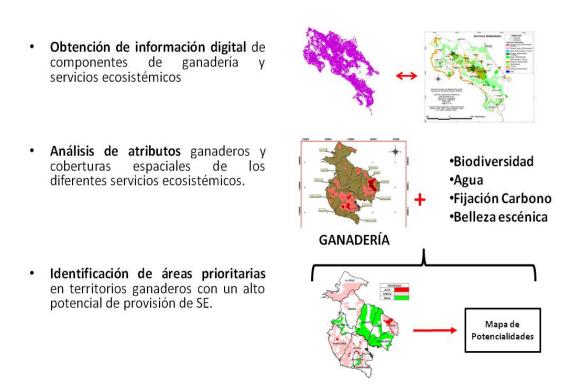


Figura 65. Esquema ilustrativo para estimar el Potencial de provisión de Servicios ecosistémicos (Agua, Biodiversidad, Carbono y Belleza escénica) en territorios dominados por la ganadería en la Región Chorotega

8.5.1. Conservación de la biodiversidad

La Ley de Biodiversidad Nº 7788 de Costa Rica (1998), define biodiversidad "como la variabilidad de organismos vivos de cualquier fuente, ya sea que se encuentren en ecosistemas terrestres, aéreos, marinos, acuáticos o en otros complejos ecológicos." Comprende la diversidad dentro de cada especie, así como entre las especies y los ecosistemas de los que forma parte. La Región Chorotega resalta su importancia en la conservación de la Biodiversidad debido a que en su territorio se encuentran 3 Áreas de Conservación (Área de Conservación de Guanacaste, el Área de Conservación Arenal Tilarán y el Área de Conservación Tempisque), el corredor Biológico Chorotega (conformado por 7 corredores biológicos locales), 7 parques nacionales (Parque Nacional

Volcán Arenal, Parque Nacional Barra Honda, Parque Nacional Guanacaste, Parque Nacional Marino Las Baulas, Parque Nacional Palo Verde, Parque Nacional Rincón de la Vieja, Parque Nacional Volcán Tenorio) y un refugio de vida Silvestre (Cabo Blanco).

Para el análisis de este componente referente a la biodiversidad se analizó:

 Corredores Biológicos: Tomados en cuenta debido a que la ganadería convencional tiene un impacto considerable en los corredores biológicos al generar fragmentación y disminuir la conectividad en los mismos.

Para el análisis fueron categorizados de acuerdo a su objetivo de creación: General (3), Protección bosques y humedales (3), Biodiversidad y agua (2), Restauración ecológica (2), Conservación de Mantos acuíferos (1) y Conservación de especies (1).

 Áreas protegidas: Consideradas debido a que la ganadería se haya presente en las zonas de amortiguamiento e incluso se evidencia un avance de esta actividad sobre estas áreas.

Fueron clasificadas de acuerdo a su prioridad de protección: Parque nacional (3), Reserva indígena (3), Humedales (3), Refugio (2) y Otros (1).

 Humedales: Estas zonas frágiles y de vital importancia para la conservación de la biodiversidad son altamente vulnerables al desarrollo ganadero convencional.
 Incluso en algunos casos se encuentran inmersas dentro de fincas ganaderas.

Fueron categorizados de acuerdo a: Superficie ocupada y grado de interacciones con poblaciones humanas.

Como resultado del análisis espacial de estos datos con sus atributos y puntaje respectivo, se obtuvo un mapa de zonas con alto potencial para generación de SA en biodiversidad (Figura 68).

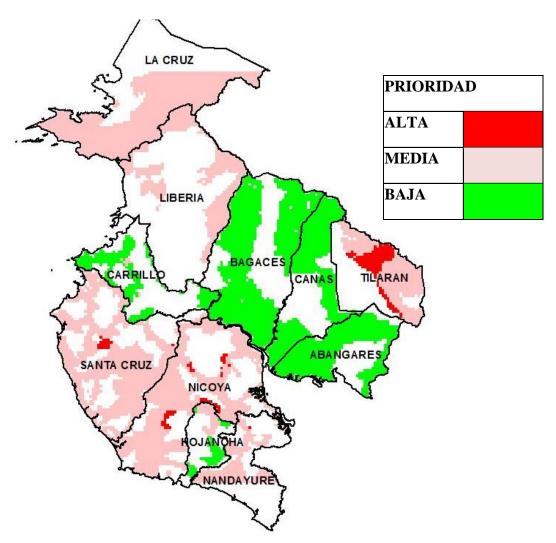


Figura 66 Mapa de zonas con alto potencial para provisión y conservación de la Biodiversidad en el paisaje ganadero de la Región Chorotega.

8.5.2. Recurso hídrico

En la región chorotega se consumen actualmente alrededor de 1.100 litros por segundo, lo cual equivale al 20 % de lo que se consume en el Acueducto del Área Metropolitana de San José. Entre los principales usuarios del recurso hídrico se cuentan la población (principalmente para consumo), proyectos hidroeléctricos y de riego, la actividad turística y actividades agropecuarias.

La Región Chorotega, aún contando con 13 grandes cuencas y alrededor de 650 microcuencas, es una de las regiones con menor riqueza hídrica del país, y de hecho es la región más seca de Costa Rica. En la región, la principal fuente de agua son los acuíferos, los cuales debido a la contaminación y sobreexplotación (principalmente por extracción de caudales considerables de agua mediante pozos) han disminuido considerablemente sus

caudales. A esto se aúna el punto que la región alberga importantes proyectos hidroeléctricos y de Riego. Es por ello que garantizar la provisión del servicio ecosistémico hídrico, ya sea en regulación, calidad y cantidad, es de vital importancia.

Los recursos hídricos en la región son vulnerables debido a que:

- Existe un Ingreso directo de los animales a los cuerpos de agua como nacientes y ríos;
- Los remanentes de bosques riparios están en un estado crítico y en algunos casos su ancho de vegetación no supera los 2 metros a cada margen o en el peor de los casos no existen.
- Hay un preocupante avance de la degradación de los ecosistemas acuáticos.
- El cambio de uso de la tierra está ocasionando una deforestación severa en zonas de recarga hídrica.
- Son comunes las malas prácticas de uso y consumo de agua.



Figura 67. Foto de Cursos de agua sin protección riparia alguna cursan fincas ganaderas en la región Chorotega.

Para el análisis de este componente referente a los recursos hídricos se consideró:

 Humedales: Debido a que su ubicación abarca zonas de producción ganadera, la cual ha generado un deterioro en los mismos debido a un mal manejo la actividad pecuaria.

Fueron categorizados de acuerdo a: Superficie ocupada y grado de interacciones con poblaciones humanas.

 Acuíferos: Reservas subterráneas de agua de vital importancia para el abastecimiento y conservación del recurso hídrico.

Por su importancia todos con categoría 3

 Pozos y acueductos: Es la principal fuente de agua en muchas fincas ganaderas tanto para consumo humano como animal.

Todos considerados importantes, pero una categoría menos que los acuíferos (2)

 Zonas de importancia hídrica: Son zonas identificadas, delimitadas y priorizadas para garantizar la cantidad, calidad y continuidad del recurso hídrico en la región. Muchas de ellas se encuentras ubicadas en zonas ganaderas.

Fueron categorizados por: importancia Agua subterránea + infiltración + concesiones (3), Agua subterránea + concesiones (2), Infiltración + concesiones (1) y Concesiones (3)

Como resultado de sobre posición de estos mapas y atributos dio como resultado un mapa de zonas con alto potencial para generación de SA Recursos hídricos (Figura 70)

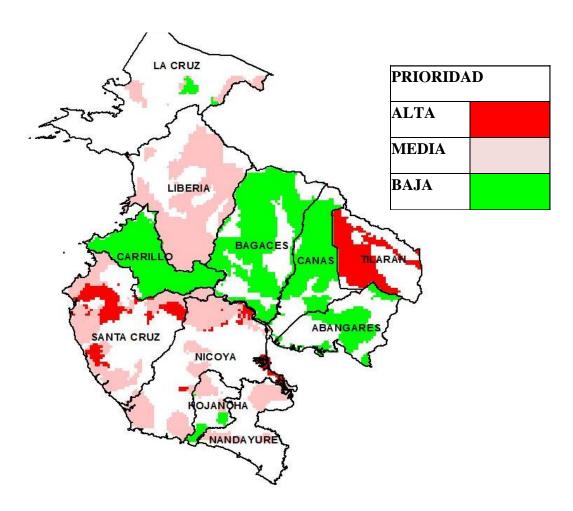


Figura 68. Mapa de zonas con alto potencial para provisión y conservación Recursos hídricos en paisajes ganaderos de la Región Chorotega.

8.5.3. Fijación de carbono

Este SE incluye los procesos de fijación, reducción, secuestro, almacenamiento y absorción de CO2.

La región de Chorotega cuenta con un alto potencial de fijación de carbono mediante los sumideros de carbono¹³, al contar con alrededor del 24% (5393 ha) del total de Tierras Kioto identificadas en el país.

Para el análisis de este componente se analizó:

¹³ En términos generales, un sumidero de carbono o sumidero de CO₂ es un depósito natural o artificial de carbono, que absorbe el carbono de la atmósfera y contribuye a reducir la cantidad de CO₂ del aire. Los principales sumideros eran los procesos biológicos de producción de carbón, petróleo, gas natural, los hidratos de metano y las rocas calizas. Hoy día son los océanos, y ciertos medios vegetales (bosques en formación). Un sumidero de carbono no tiene por objeto reducir las emisiones de CO 2, sino de disminuir su concentración en la atmósfera

- Corredores Biológicos: Cuya vegetación compuesta por sistemas forestales y bosques riparios le permite tener un alto potencial de fijación de carbono Fueron categorizados de acuerdo a su objetivo de creación: General (3), Protección bosques y humedales (3), Biodiversidad y agua (2), Restauración ecológica (2), Conservación de Mantos acuíferos (1) y Conservación de especies (1).
- Tierras Kioto: Son tierras que han sido definidas por el gobierno y de las cuales algunas áreas se hallan en fincas ganaderas.

Como resultado de sobreposición de estos mapas y atributos dio como resultado un mapa de zonas con alto potencial para Fijación de Carbono (Figura 71)

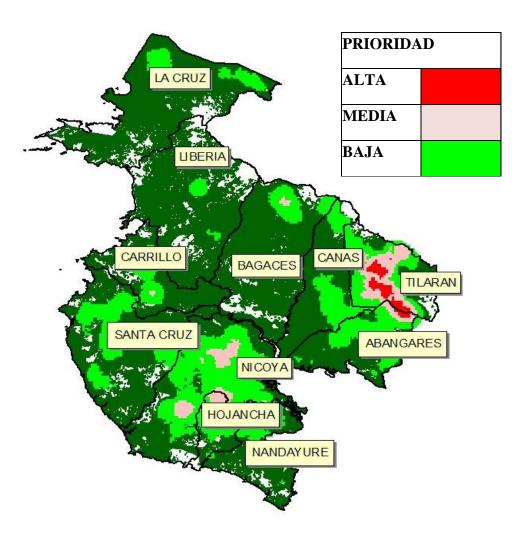


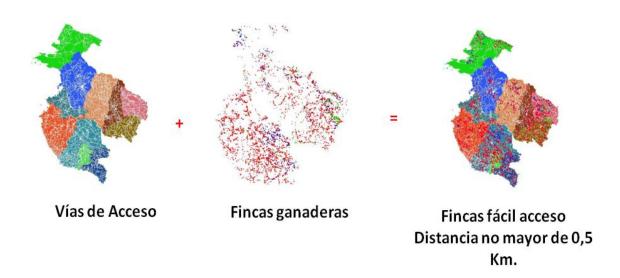
Figura 691. Mapa de zonas con alto potencial para la fijación de Carbono en paisajes ganaderos de la Región Chorotega.

8.5.4. Belleza escénica

Según el Ministerio de Planificación Nacional y Política Económica (MIDEPLAN), la belleza escénica es un concepto que conlleva aspectos subjetivos, pero ligados a la conservación y el disfrute de un patrimonio heredado, porque está constituido por una amplia gama de recursos naturales, por ejemplo los ríos, montañas, volcanes, lagos, bosques y la biodiversidad; los cuales tienen un significativo valor económico que pocas veces es reconocido por la población. En los últimos años se viene reconociendo el gran potencial que tienen los agropaisajes para la recreación poblacional y el desarrollo del ecoturismo, tanto así que como parte de políticas ambientales del país, se ha planteado la necesidad de mejorar la calidad del paisaje. En la región el Turismo es un eje importante en la actividad económica.

La región Chorotega cuenta con gran potencial de brindar este tipo de servicio ecosistémico en varias áreas de su territorios ganaderos, pues existen zonas identificadas que permiten la posibilidad de disfrute, tanto para la actividad turística y científica, basados en las formaciones y expresiones de su recursos naturales.

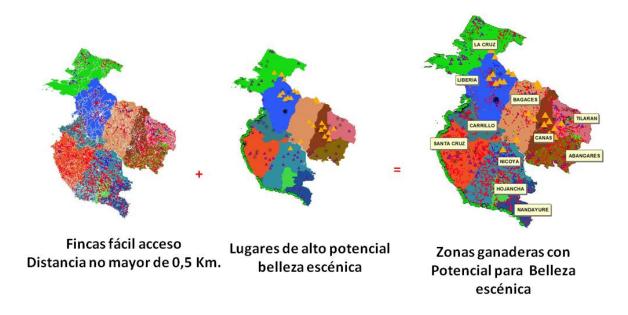
Para el análisis de este componente se tomó los siguientes criterios y pasos:


Criterio: Fincas con fácil acceso: Max 0,5 Km de vía principal y próximas a:

Sitios Turísticos: Montañas y Volcanes


Hoteles y playas

Pasos: los seguidos son:


Paso 1: Estimación de fincas con fácil acceso

Paso 2: identificación de lugares con alto Potencial de Belleza Escénica.

Paso 3: Elaboración de mapa de zonas ganaderas con Potencial de belleza Escénica

Como observamos el producto final de esta metodología es la elaboración de un mapa de zonas con potencial de brindar el servicio de belleza escénica en territorios ganaderos (Figura 72).

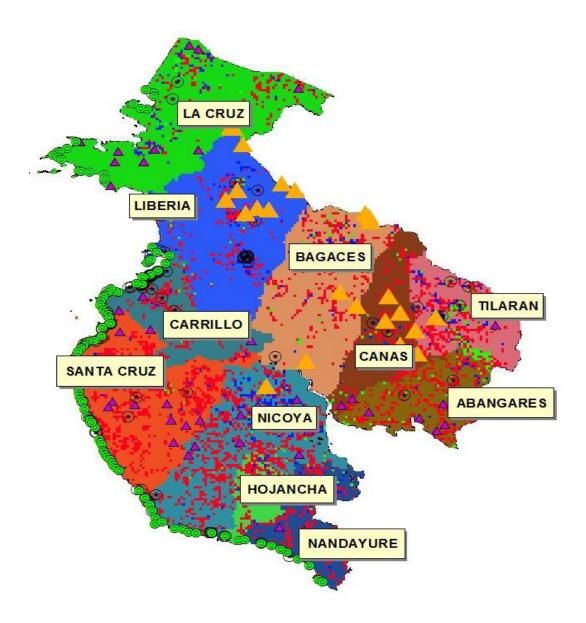


Figura 70. Mapa de zonas con alto potencial para Belleza Escénica en paisajes ganaderos de la Región Chorotega.

8.6. Cantones con potencial para provisión de servicios ecosistémicos en sistemas ganaderos

El siguiente Cuadro presenta un resumen a nivel cantonal sobre el potencial de provisión de servicios ecosistémicos (Biodiversidad, Agua, Carbono y Belleza Escénica) en territorios ganaderos de la región Chorotega.

Cuadro 69. Resumen a nivel cantonal del potencial para la provisión de servicios ecosistémicos en paisajes ganaderos en la Región Chorotega

Sevicio Ecosistemico	La Cruz	Liberia	Carrillo	Santa Cruz	Nicoya	Bagaces	Cañas	Tilarán	Abangares	Hojancha	Nandayure
Bidiversidad											
Agua											
Carbono											
Belleza escenica											

Donde:

Bajo	
Medio	
Alto	

El cuadro anterior, se indica que de acuerdo a la densidad ganadera de los cantones y su impacto en los ecosistemas, se presentan diferentes niveles de provisión de Servicios Ecosistémicos en los cantones; siendo considerados los de mayor prioridad aquellos donde la densidad ganadera es mayor y donde la presencia del servicio ecosistémico tiene mayor relevancia.

Referente a Conservación de Biodiversidad y Recursos hídricos, son los cantones de Santa Cruz, Nicoya y Tilarán los presentan los "hotspot" relacionados con la ganadería y en los que el establecimiento de sistemas ganaderos sostenibles y amigables con el ambiente podría proveer una mayor conservación de agua y Biodiversidad.

Sobre la fijación de carbono se deduce que la ausencia de un cantón que presente una alto potencial de provisión (extiendo niveles medios y bajos), se debe a que estas zonas están ubicadas principalmente en áreas protegidas o bosques primarios. Sin embargo la incorporación de arboles en paisajes ganaderos de los diferentes cantones podría potenciar la provisión de este servicio. En algunos cantones como Nicoya, Tilarán, Abangares y Hojancha los finqueros ya han contemplado la opción de incluir árboles en sus sistemas ganaderos, lo cual contribuye a la fijación de carbono en el suelo en áreas de la región no consideradas tierras Kioto.

En lo que concierne a Belleza Escénica los cantones con fincas ganaderas que figuran con un alto potencial de desarrollar la actividad turística- rural son aquellos que se encuentran ubicados cerca a lugares turísticos como parques nacionales, volcanes y playas, esto debido a que se puede aprovechar la infraestructura existente como carreteras, hoteles y servicios varios. Entre los principales cantones figuran: Liberia, Carrillo, Santa Cruz, Nicoya, Cañas, Hojancha y Nandayure.

8.7. Conclusiones

Actualmente, los servicios ecosistémicos en la región afrontan una alta presión de la actividad ganadera. Esto se debe a que en la región el principal uso de la tierra es la ganadería, por lo cual se encuentra distribuida o cerca a ecosistemas de importancia para la biodiversidad y conservación del recurso hídrico, los cuales muchos están siendo afectados y otros son altamente vulnerables a las actividades propias de la actividad ganadera como son la expansión de pasturas en monocultivo y las inadecuadas prácticas de manejo.

Debido a que varios corredores biológicos, áreas protegidas y humedales, ecosistemas de vital importantes para la conservación de la Biodiversidad se encuentran próximas o bajo uso ganadero, es importante identificar estrategias que permitan la conservación de dichos ecosistemas. Esto se podría lograr mediante un mayor énfasis en la protección de ecosistemas frágiles, así como un cambio de visión de la actividad ganadera la cual incluya una visión holística y amigable con el ambiente, lo cual permitirá garantizar la permanencia de la abundancia y riqueza de especias, así como su conectividad y funcionalidad.

Por otra parte, los recursos hídricos en los paisajes ganaderos de la región presentan una alta vulnerabilidad a degradación y contaminación por parte de la actividad ganadera. El evidente avance de la degradación de cauces y contaminación de cuerpos de agua por residuos orgánicos bien puede ser afrontado mediante la recuperación y establecimiento de bosques riparios y la masificación de tecnologías de manejo de residuos en fincas ganaderas.

Por otro lado, las emisiones generadas en la finca pueden ser compensadas con la incorporación de árboles y leñosas, lo cual contribuirá a la fijación de carbono atmosférico en el suelo. Este es un potencial de fijación de carbono que tienen la región alternativo a las tierras Kioto ya identificadas.

Asimismo, se deben identificar estrategias y lineamientos para aprovechar el potencial de tienen las fincas ganaderas para desarrollar turismo rural o ecológico, lo cual contribuiría a la generación de empelo e ingresos a los finqueros.

En síntesis, este primer análisis de generación de servicios ecosistémicos (SE) en paisajes ganaderos de la Región Chorotega, concluye que existen zonas con un alto potencial para provisión de SE en paisajes ganaderos; por lo que es necesario identificar y priorizar ciertas áreas en las cuales se deba hacer una pronta o urgente intervención. Esta priorización no quiere decir que las demás áreas o cantones no seleccionados no sean importantes, sino que por la categorización y análisis realizado su nivel de importancia no las califica como prioritarias.

La implementación de sistemas silvopastoriles podría contribuir a mejorar la provisión de servicios ecosistémicos en territorios ganaderos la región chorotega.

8.8. Revisión de Literatura:

- Atlas Digital de Costa Rica 2008.
- Beer, J., C.A. Harvey, M. Ibrahim, J.M. Harmand, E. Somarriba & F. Jimenez. 2003. Servicios ambientales de los sistemas agroforestales. Agroforestería Américas 10:80-87
- Groot, RS de; Wilson, MA; Boumans, RMJ. 2002. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics (41):393-408
- Gobbi, J; Ibrahim, M; Casasola, F; Ramírez, E; Murgueitio, E. 2005. ¿Solucionando el problema del monitoreo? El uso de un índice ecológico como herramienta para aplicar un pago por servicios ambientales. In Henry Wallace/CATIE Inter-American Conferences Series (4, 2004, Turrialba, CR). 2005. Integrated management of environmental services in human-dominated tropical landscapes. CATIE. P
- Harvey, C.A., C.F. Guindon, W.A. Harber, D. Hamilton & K.G. Murray. 2008. Importancia de los fragmentos de bosque, los árboles dispersos y las cortinas rompevientos para la biodiversidad local y regional de Monteverde, Costa Rica, p. 289-326. In C.A. Harvey & J.C. Sáenz (eds). Evaluación y conservación de biodiversidad en paisajes fragmentados de Mesoamérica. Instituto Nacional de Biodiversidad INBIO, Santo Domingo de Heredia, Costa Rica.
- MEA (Millennium Ecosystem Assessment). 2003. Ecosystems and Human Well-being: A framework for Assessment (en línea). Consultado diciembre 2007. Disponible en http://www.epa.gov/sab/pdf/millenium assessment ch6.pdf

9. ANEXOS

ANEXO 1. Encuesta de competitividad de la Región Chorotega

ENCUESTADOR POR FAVOR LLENAR LA ENCUESTA CON LETRA LEGIBLE

A)	INFORMACIÓN GENERAL
1.	Duración de la encuesta:
2.	Nombre del encuestador Fecha
3.	Región 1. Chorotega 2. Huetar Atlántica 3. Huetar Norte 4. Brunca 5. Pacífico Central 6. Central Sur
4.	Cantón Distrito
5.	Acceso al predio: - Camino transitable todo el año en carro - Camino transitable solo en época seca en carro - Camino en mal estado ingreso a pie o a caballo - Otros
Distanc	cia (km) de la finca a la carretera principal
Distanc	cia (km) de la finca a la ciudad más cercana
6.	Servicios públicos con los que cuenta:
	 Carretera destapada SINO

		el propietario de la Teléfon			oersona	
8.	Nombre d	e la persona entrev	vistada			
9.	Nivel esco	laridad del propiet	ario			
maı	ria Sec	undaria Téc	nica*	Univ	ersitaria	Otr
o ga	anadería, e	enos de 3 años de u etc. le la familia según			escuelas de agri	cultu
	Edad	Número miembros de la familia en esa categoría de edad			Ocupación	
		cuau	Jornalero	Técnico	Profesiona l	_
	0 – 12				1	
	13 – 18					-
	19 – 25					
	26 – 40					
	>40					
11. 12.		ido asistencia técni		No		tem
14.			que			

13.	¿Pertenece a alguna organización o asociación? Si No
14.	Nombre de la organización o asociación

C) MANO DE OBRA

15. Uso de mano de obra en la finca según época del año

		Contratada		
	Familiar	Permanente	Ocasional	
Epoca seca				
No de jornales				
mes (hombres)				
No de jornales				
mes (Mujeres)				
Epoca lluviosa				
No de jornales				
mes (Hombres)				
No de jornales al				
mes (Mujeres)				

16. ¿Cual	es	el	valor	de	un	jornal?	Horas
laborad	as:						

D) INFORMACIÓN DE LAS FINCAS

17. Características de las fincas

	Tenencia *	Area de la	Dirección	Actividades
Finca		finca (ha)	(Cantón, distrito)	que presenta
				la finca
1				
2				
3				
4				

Tenencia =*Propia con escritura y plano, 2 = Propia con plano, 3 = Propia con escritura, 4 = Propia en derecho posesorio, 5 = Propia parcela del IDA, 6 = Arrendada, 7 = Prestada. 1 manzana Aprox 7000 metros cuadrados y una hectárea 10000 metros cuadrados.

18. Usos de la tierra presentes en las diferentes fincas ganaderas.

Finca número:						
Usos de la tierra	Area (ha)	Observaciones				
Pastura degradada						
Pastura natural						
Pastura mejorada						
Banco forrajero de gramíneas						
Banco forrajero de leñosas						
Cultivos anuales						
Cultivos perennes						
Plantaciones maderables						
Tacotal						
Bosque ripario						
Bosques secundarios						

En caso de que el productor tenga más fincas utilice el (formato 1 Anexo 1). Pastura degradada = Areas con suelos lavados, deslizados, cárcava y donde predominan las malezas. En bosques riparios si no conoce el área calcule un % de cobertura. Calcule el % de los potreros que presentan cercas vivas.

E) INFRAESTRUCTURA DE LA FINCA Y PÚBLICA

19. Infraestructura

Construcciones	Dimensiones m ²	Estado	Costo m ²
	y número		
Corral			
Corral con manga			
Lechería			
Comederos			
Bebederos fijos			
Saladeros			
Bodega			

20. Maquinaria, vehículos y equipo

Concepto	Cantidad	Marca	Valor
Tractor			
Rastra			
Arado			
Vehículo			
Bomba de agua para riego			
Picadora de pastos			
Romana de pesar Ganado			

F) MANEJO DEL RECURSO AGUA

21. Manejo del recurso agua

Fuente de agua	Protección de la fuente de agua	Disponibilidad de agua en verano**	Disponibilidad de agua invierno**	Donde consume agua el ganado
Nacientes				
Ríos				
Quebradas				
Pozos				
Laguna artificial				
Cañería *				
Camión *				
Bebederos *				

^{*}No aplica en la relación protección de la fuente de agua **= Abundante, Moderada, Poca, Nada.

G) GANADERÍA

22. Inventario del hato en la finca

Categoría	Número de animales en 2009	Muertes al año	Ventas*	Donde	Compras al año	Donde
Vacas paridas						
Vacas secas						
Novillas > 2 años						
Novillas 1-2 años						
Novillos > 2 años						
Novillos 1-2 años						
Terneros						
Terneras						
Toros						
Bueyes						
Caballos						

*El precio de venta y compra se estimará con datos de las subastas donde ellos comercializan el ganado.

23. Grupos o lotes de ganado que maneja en su finca y sistema de pastoreo durante la época

Grupo o lote		Pastoreo	Pastoreo rotacional	Pastoreo
iote	rotacional	continuo	+ semiestabulación	continuo +
				semiestabulación
Epoca lluvio	sa	1		
Vacas				
paridas				
Vacas				
secas				
Novillos				
engorde				
Novillos de				
engorde				
Toros				
Caballos				
Epoca lluvio	sa	•		
Vacas				
paridas				
Vacas				
secas				
Novillos				
engorde				
Novillos de				
engorde				
Toros				
Caballos				

En ocasiones puede aplicar otra categoría por ejemplo novillas

24. Sistema	de	prod	producción:		
	Desarrollo	Engorde	_ Doble Propósito		
Mixto (Ga	nadería + Agricul	tura comercial))		

23. 60	Cuales Lazas V C	i uces maneja en ia i	ilica.			
26. El	l ganado lo mar	neja en una sola finca	a Si	_ No _		
Arete		ficación del ganado: Fierro candente				
embrion	es	Inseminación le ser más de una.	artificial_		_Transplante	de
Número	de nacimientos	por año:o % c	le parición _			

29. Producción de leche y queso anual

Variable	Epoca seca	Epoca lluviosa
Número de vacas en ordeño		
Producción total de la finca en		
kg/dia		
Producción en kg por vaca		
Valor de un kg de leche		
Producción del kg de queso		
Valor de un kg de queso		
Cuanta leche produjo para venta		
Cuanta leche produjo para		
autoconsumo		
Buenas prácticas de proceso,		
elaboración e inocuidad de quesos		

G). MANEJO DE PASTURAS

30. Características de los potreros en la finca

Potrero	Area	Especie de	Pendiente *	Condición del	Número de	% del	Condición de
	(ha)	pasto		potrero**	árboles	potrero	la cerca
		dominante			adultos	rodeado de	viva***
						cerca viva	

^{*} Pendiente PI=Plano, PM =Pendiente moderada, PF=Pendiente fuerte. ** Buena condición: ≥ de 70 % cobertura del suelo, moderada = entre 50 a 70 %, Baja cobertura =< del 50 % de cobertura del suelo. *** Cerca viva buen estado = continua, bien manejada, con buen vigor, cerca viva en mala condición = discontínua, mal manejada, pobre vigor. Evalúe al menos 3 potreros.

31. Numero total de potreros en la finca	_
32. Tiene riego para áreas destinados a ganadería Si	_ No
Sistema de riego empleado	_

33. Especies	comunes	de	árboles	en	potreros,	su	uso	principal	y	manejo	en
finca.											

ID	Especies	Uso	Manejo*
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
	Total		

*Podas, raleos, otros.

34. Tipos de cercas	Simples	Diversificadas	Muertas _	
Eléctrica				Otro

35. Especies comunes en cercas vivas, su uso principal y manejo en finca.

ID	Especies	Uso	Manejo
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
	Total		

H) ALIMENTACIÓN

36. Insumos alimenticios usados en la finca

Epoca seca					
Categoría animal	Suplementos*	Kg/día/animal	Costo		
Vacas en ordeño					
Vacas secas					

Epoca seca						
Categoría animal	Suplementos*	Kg/día/animal	Costo			
Novillos de						
engorde						
Otros						
Epoca lluviosa						
Categoría animal	Suplementos*	Kg/día/animal	Costo			
Vacas en ordeño						
Vacas secas						
Novillos de						
engorde						

Epoca seca			
Categoría animal	Suplementos*	Kg/día/animal	Costo
Otros			

Suplementos = Concentrados, miel, sal, banana, gallinaza, pulpa, cáscara de naranja, pasto de corte, etc.

I) SANIDAD ANIMAL

37. Insumos para la salud animal (desparasitantes, vacunas, antibióticos, etc.)

Concepto	Cantidad total por año (en litros o kg, cc)	Costo total del producto aplicado (Colones CR)	Categoría animal	Número de animales

Por ejemplo especificar contra que enfermedades aplica la vacuna

38. Enfermed	lades	infecciosas	y	parasitarias	de	importancia	económica	en	la
finca pres	sentes	en el último	a	ño					

Categorías de	Nombre de la	% de animales
animales	enfermedad	afectados
Vacas paridas		
Vacas secas		
Novillos engorde		
Novillos de engorde		
Toros		
Caballos		
Categorías de	Nombre del	% de animales
animales	parásitos	afectados
Vacas paridas		
Vacas secas		
Novillos engorde		
Novillos de engorde		
T		
Toros		

39	: Tiene el	Certificado	Veterinario de	Operación	(CVO)? Si	No
<i>J</i> / .	" I ICHE CI	Cumicauo	v ctci iliai io uc	Operación	(\mathbf{C}, \mathbf{C})) • DI	110

J) OTROS GASTOS

40. Agroinsumos utilizados en usos de la tierra para ganadería.

Nombre del producto	Cantidad aplicada (l o kg)	Costo	Area (ha)

K) APORTE DE INGRESOS A LA FINCA

41. ¿Cuál es el orden de mayor a menor aporte porcentual de cada rubro productivo en el ingreso total de la familia?

Actividad	Aporte % al ingreso total de la familia	Observaciones
Ganadería bovina		
Ganadería menor (aves, credos, otros)		
Agricultura		
Forestería		
Renta de tierra		
Fuera de la finca		

L) INNOVACIONES TECNOLÓGICAS Y MECANISMOS

42. ¿Cuales innovaciones tecnológicas ha implementado en su finca y que mecanismos ha utilizado para la adopción?

Innovación tecnológica	Usted tiene esta innovación en su finca	Mecanismo empleado para la adopción	Observaciones
Cercas vivas			
Arboles dispersos en potreros			
Bancos forrajeros			
Pasturas mejoradas sin árboles			
Pasturas mejoradas con árboles			
Pasturas asociadas con leguminosas herbáceas			
Pasturas en callejones			

Innovación tecnológica	Usted tiene esta innovación en su finca	Mecanismo empleado para la adopción	Observaciones
Biodigestor			
Lombricompost			
Tratamiento de aguas residuales			
Reforestación			
Protección de nacientes, ríos y quebradas			
Cerca eléctrica			
Uso de registros productivos			
Uso de registros reproductivos			
Uso de registros sanitarios			
Tiene otros cultivos			
Agroturismo, turismo rural			
Artesanias, venta plantas			

^{*}Los mecanismos son pago de servicios ambientales, crédito, asistencia técnica, donaciones, regalías, fondos propios.

43.	¿Ha comprado o vendido tierras en los últimos 5 años? SI NO ¿Cuánta área?
44.	¿Cual es el precio promedio por hectárea en la zona?
N)	CAMBIO CLIMÁTICO
45	Impacto en la productividad animal e ingresos en su finca

M) VALOR DE LA TIERRA

Acción	Categoría animal	Número o porcentaje	
		Epoca seca	Epoca lluviosa
Pérdida de peso de los			
animales			
Muerte de animales			
Disminución de la producción			
de leche			
Disminución del precio de la			
carne			
Disminución en el precio de la			
leche			
Aumento en el precio de la			
leche			

43 ¿Qué acciones realiza para hacer frente a cambio climático?

Acciones	Cuanto invierte o pierde	
	Epoca seca	Epoca lluviosa
Venta de ganado		
Comprar insumos alimenticios		
Adquirir pastos de otras fincas		
Rentar pastos en otras fincas		

Formato: Usos de la tierra presentes en las diferentes fincas ganaderas.

Finca número:				
Usos de la tierra	Area (ha)	Observaciones		
Pastura degradada				
Pastura natural				
Pastura mejorada				
Banco forrajero de gramíneas				
Banco forrajero de leñosas				
Cultivos anuales				
Cultivos perennes				
Plantaciones maderables				
Tacotal				
Bosque ripario				
Bosques secundarios				

Pastura degradada = Áreas con suelos lavados, deslizados, cárcava y donde predominan las malezas. En bosques riparios si no conoce el área calcule un % de cobertura. Calcule el % de los potreros que presentan cercas vivas.

ANEXO 2. Encuesta Emisión de Gases Efecto Invernadero en fincas ganaderas de la región chorotega

	A) INFORMACIÓN GENERAL			
	1. Duración de la encuesta:			
2.	Nombre del productor		Fecha	
3.	Cantón	Distrito _		
No	mbre del encuestador			

B) DATOS DEL PRODUCTOR Y SU FAMILIA

4. Miembros de la familia y diferentes ocupaciones

Edad	Número miembros	Ocupación						
	de la familia por categoría de edad	Estudiant e*	Trabajador de la finca	Empleado fuera de la finca	Trabajador independiente			
0 – 12								
13 – 18								
19 – 25								
26 – 40								
>40								

^{*}Considerar primaria, secundaria, técnica, y universitaria.

MANO DE OBRA

- 5. Cuando contrata mano de obra, donde es más fácil conseguirla?
 - a. Alguien de la Familia le ayuda y ud le paga = 1
 - b. De su comunidad = 2

	c. De la región= 3			
Ob	servaciónes:			
	C) INFRAESTRUCTURA	DE LA FINCA Y P	ÚBLICA	
			oblici.	
6.	Otra Infraestructura y tecn	ologías Silvopastori	iles	
	(Complementa la pregunta N	No. 19 de la encuesta	ı base)	
	Construcciones	Dimensiones	Estado	Costo m ²
	Constitueiones	Km., m ² y/o	Listado	
		número	Bueno= 1	
			Regular = 2	
			Malo = 3	
	Bancos Forrajeros			
	Cercas Vivas			
	Bosques ribereños			
	Aguadas			
	Senderos			
	Caminos			
7	¿Qué tipo de energía utiliza	on la finas?		
/•	¿Que upo de energia duniza	en la finca:		
	a. Electricidad = 1			
	b. $Gas = 2$			
	c. Diesel = 3			
	d. Leña = 4			

8. Inventario y consumo de combustibles de Maquinaria, vehículos y equipo

(Complementa la pregunta no. 20 de la encuesta base)

Concepto	Cantidad	Marca	Valor	Diesel,	Consumo
				Gasolina,	mensual
	(consultad	(consultad	(consultad	otros	(en colones)
	<u>a en la</u>	<u>a en la</u>	<u>a en la</u>		
	<u>preg. 20)</u>	<u>preg. 20)</u>	<u>preg. 20)</u>		
Tractor	-	-	-		
Rastra	-	-	-		
Arado	-	-	-		
Vehículo	-	-	-		
Bomba de agua para	-	-	-		
riego					
Picadora de pastos	-	-	-		
Romana de pesar	-	-	-		
Ganado					

D) MANEJO DE RESIDUOS SÓLIDOS Y LÍQUIDOS

9. ¿Tiene algún manejo para	los residuos sólidos (estiércol,	basura etc.) y líquidos
en la finca?		

a.	Sin tratamiento, quedan esparcidas en praderas y pastizales = 1
	<u> </u>
b.	En pilas (recolección y deposito a pasturas diario) = 2
c.	En pilas, Abono, lombriz., etc. (almacenado y apilado en seco) = 3
	
d.	En biofertilizantes (Almacenado liquido / lechoso) = 4
e.	Biodigestor = 5

G. MANEJO DE PASTURAS

a. Diesel = 1 b. Gasolina = 2 c. Electricidad = 3 d. Gravedad= 4 e. Otro = 5. Como se llama?	utilizac	io iunciona con:			
c. Electricidad = 3 d. Gravedad= 4 e. Otro = 5 .	a	. Diesel = 1			
d. Gravedad= 4 e. Otro = 5 .	b	o. Gasolina = 2			
e. Otro = 5 Como se llama? (Si respondió que si en la pregunta No.32 de la encuesta base) 10. ¿Cuál es el costo de funcionamiento del riego al mes? a. Hace cuanto tiempo que tiene el sistema de riego? 11. haga una lista de las especies de pastos que tiene en los potreros y encierre un circulo la que produce más forraje durante el año (mencione solo una) a b c d e	c	. Electricidad = 3			
(Si respondió que si en la pregunta No.32 de la encuesta base) 10. ¿Cuál es el costo de funcionamiento del riego al mes? a. Hace cuanto tiempo que tiene el sistema de riego? 11. haga una lista de las especies de pastos que tiene en los potreros y encierre un circulo la que produce más forraje durante el año (mencione solo una) a b c d e	d	. Gravedad= 4			
10. ¿Cuál es el costo de funcionamiento del riego al mes? a. Hace cuanto tiempo que tiene el sistema de riego? 11. haga una lista de las especies de pastos que tiene en los potreros y encierre un circulo la que produce más forraje durante el año (mencione solo una) a b c d e	e	. Otro = 5 .	Com	o se llama?	
a. Hace cuanto tiempo que tiene el sistema de riego? 11. haga una lista de las especies de pastos que tiene en los potreros y encierre un circulo la que produce más forraje durante el año (mencione solo una) a b c d e	(Si respondi	ó que si en la pregu	nta No.32 de la enc	uesta base)	
11. haga una lista de las especies de pastos que tiene en los potreros y encierre un circulo la que produce más forraje durante el año (mencione solo una) a b c d e	10. ¿Cuál es	s el costo de funcior	namiento del riego	al mes?	
un circulo la que produce más forraje durante el año (mencione solo una) a b c d e	a. Ha	ace cuanto tiempo qu	ue tiene el sistema de	e riego?	_
b c d e	_	_			
c d e	a			-	
de	b			-	
e	c			-	
	d			-	
f	e			-	
	f			-	

(Si respondió que si en la pregunta No.32 de la encuesta base) El sistema de riego

12. Como califica la disponibilidad de pasto en su finca en las siguientes épocas de año:
(encierre en un círculo) :
Época seca
a. Escasa
b. Suficiente
c. Abundante
Época lluviosa
a. Escasa
b. Suficiente
c. Abundante
13. Realiza raleos o podas de árboles?
a. Si
b. No
a. ¿Cada cuando lo hace?
b. ¿Cuál es el costo aproximado?
14. ¿Qué tipo de herramientas utiliza para el raleo y poda?
a. Mecánica tipo de combustible
b. Manual
c. Ambas

a. Los deja en el suelo, en el mismo lugar donde los corta	
b. Los esparce en otras zonas de la fincas	
c. Los quema	
c. Como alimento para el ganado	
d. los procesa a nivel doméstico como abono	

15. ¿Cómo utiliza los desechos de la poda o raleo? (pueden ser varias respuestas)

E) ALIMENTACIÓN

16. Insumos alimenticios usados en la finca (Complementa la pregunta No. 36 de la encuesta base)

Epoca seca			Precio	Precio	Lugar de	Distancia (Km.
Categoría animal	Suplementos* (respu. en 36)	Kg./día (respu. en 36)	mínimo	máximo	compra	desde la finca)
Vacas en ordeño	-	-				
Vacas secas	-	-				
Novillos de engorde	-	-				

Epoca seca			Precio	Precio máximo	Lugar	de	Distance (Km.	cia
Categoría animal		mínimo	compra				la	
Otros								
E	Epoca lluviosa		Precio mínimo	Precio máximo	Lugar compra	de	Distance (Km.	cia
Categoría animal	Suplementos* (respu. en 36)	Kg./día (respu. en 36)					desde finca)	la
Vacas en ordeño								
Vacas secas								

Epoca seca			Precio Pre	D	T	Distancia
Categoría animal	Suplementos* (respu. en 36)	Kg./día (respu. en 36)	mínimo	Precio máximo	Lugar de compra	(Km. desde la finca)
Novillos de engorde						
Otros						

Suplementos = Concentrados, miel, sal, banana, gallinaza, cáscara de naranja, pasto de corte, ect.

F) OTROS GASTOS

17. Insumos químicos utilizados en usos de la tierra para ganadería. (Complementa la pregunta 41 de la encuesta base)

Nombre del	Cantidad	Area	Precio	Precio	Lugar	Distanc
producto	aplicada (lt. o	(ha)	mínim	máximo	de	ia en
	Kg.)	(respu.	0		compr	Km.
	(respu. en 41)	en 41)			a	Desde
						la finca

^{*}Precio mínimo o máximo se refiere a la variabilidad más alta o más bajo que tuvo el producto durante el año.

18.	¿El transporte de insumos a la finca lo realiza con su propio vehículo (en ca	เรอ
	que haya respondido que tiene vehículo) ó contrata el transporte?	

a. Vehiculo propio	Cuanto combustible gasta por viaje?
b. Contrata	Cuanto paga por un viaje?
c. Otro	

G) APORTE DE INGRESOS A LA FINCA

Para fincas productoras de feche:	
19. ¿Qué tipo de ordeño utiliza?	
a. Manual = 1	
b. Mecánico = 2	
20. ¿Con que frecuencia ordeña al día?	
a. Una vez al día = 1	
b. Dos veces al día = 2	
21. ¿Cuántas vacas mantiene en producció	ón?
a. Invierno	
b. Verano	
22. ¿Cuál es la producción promedio leche	e Kg. /día/animal?
a. Invierno	
b. Verano	
23. ¿Tiene alguna información del (%) leche?	grasa y (%) proteína encontrada en la
1. Invierno	
a. % grasa	
b. % Proteína	

2. Verano	a. % grasa b. % Proteína	
24. ¿Cóm	mo entrega la leche al comprador ?	
	a. En la misma finca = 1 b. Transporta a puntos de venta, centros de c. Otros = 3 Cual?_	acopio = 2
25. Ud sal	abe cuál es el destino final del producto que	e vende?
	a. Dentro del mismo cantón = 1 b. San José = 2 c. Otros = 3 Cual?	
26. ¿Cuál	ál fue el precio promedio del litro de leche o	durante el 2009
	a. Invierno	
	b. Verano	
ŭ	ál ha sido el precio mínimo y máximo paga ooca del año?	do por el litro de leche e indique
a. Pr	Precio mínimo Época del añ	o (mes?)
b. Pr	Precio máximo Época del añ	o (mes?)
la ren	qué meses del año ud nota que los cambios entabilidad de su finca? (Rentabilidad se n pérdidas en una actividad determinada)	

Para fincas productoras de carn	<u>e:</u>
29. A que edad desteta los tener	neros de la finca?
a. Cuánto tiempo duran en el pe—	eriodo de levante o engorde?
¿Cuál es la ganancia de peso viv	o/día de los animales que tiene para engorde?
Es posible que el productor no aproximado	tenga los datos exactos, pero entonces se pone un
a. Invierno	
b. Verano	
	nedio del Kg. de carne para este año?
31. ¿Cuál ha sido el precio mini indique la época del año?	mo pagado por el Kg. /carne y el precio máximo e
Precio mínimo	Época del año (mes?)
Precio máximo	Época del año (mes?)
32. ¿En qué meses del año las verentabilidad de su finca?	ariaciones en el precio de la carne han afectado la
(Rentabilidad se refiere, a obter determinada)	ner más <u>ganancias</u> que <u>pérdidas</u> en una actividad

ANEXO 3. Encuesta Potencial de Servicios Ambientales en la región Chorotega

Encuestador: en Itálica las instrucciones para ud, no debe mencionarlas al productor A) INFORMACIÓN GENERAL 1. Duración de la encuesta:_____ 2. Nombre del encuestador **Fecha** 3. Cantón _____ Distrito _____ **B) BIODIVERSIDAD** 4. Cuando le mencionan la palabra biodiversidad ¿con qué término, conceptos y actividades la asocia? (seleccione solo una respuesta) a. Variedad de animales y plantas b. Cuidar el ambiente y recursos naturales en una región c. Protección de las fuentes de agua d. Variedad de árboles en la finca e. Mejor apariencia de la finca 5. ¿Ha visto animales silvestres en su finca y donde los ha visto?_____ **Animales** Lugar

	a. NO
	b. SI
	c. Mencione cuales
7.	¿Ha notado un aumento en la presencia de plagas en las pasturas durante lo últimos 10 años?
	a. NO
	b. SI
	c. Mencione cuales
8.	¿Ha observado en el suelo más lombrices, hormigas, termitas, etc.,(mayo presencia de hormigueros, y deposiciones de lombriz, etc.)? en los últimos 1 años?
	a. NO
	b. SI
	b. SI c. Mencione cuales

6. ¿Ha notado mayor presencia de insectos o animales voladores (pájaros,

El objetivo de la pregunta es: i) identificar si reconoce el valor de las abejas en la polinización de flores y producción de semillas y ii) si reconoce el valor de varias

especies florísticas juntas por ejemplo en cercas vivas etc.

		nsferencia del polen desde lo	
estigma o parte red frutos.	<u>ceptiva de las flo</u>	ores haciendo posible la prod	ucción de semillas y
<u>, </u>			
			
	_	sto en su finca? (puede ser	para autoconsumo e
incluye sistema	s forestales)		
a. Si			
b. N	0		
ar prapovniá a		N/OB	
SI RESPONDIÓ S.	I EN LA ANTER	AOK	
11. Datos del Culti	vo		
Tipo de cultivo	Edad	Cada cuanto obtiene la cosecha	Área (ha)
12. ¿Para el estab	lecimiento de o	cultivos o pastos practica	la quema? SI
A LOS QUE	E RESPONDIER	RON SI	
a. ¿Cada	cuanto realiza las	quemas en su finca?	
b. ¿Enun	nere los beneficio	s de utilizar la quema en la fin	ca?

- Relacionar la respuesta con la definición de abajo

13. ¿Utiliza o aprovecha árboles provenientes de tacotales, bosques ribereños áreas boscosas o árboles dispersos en el potrero? a. SI
b. NO
A LOS QUE RESPONDIERON SI
a. ¿Para leña? SI NO
b. Para madera? SI NO
c. Otro uso
d. ¿Qué cantidad consume por año (metros cúbicos)?
14. Protege las áreas del bosque del acceso del ganado?
a.SI De manera temporal o permanente?
b. En que época del año sequía o invierno?
c.NO A LOS QUE RESPONDIERON SI
Utiliza cercas vivas o cercas muertas?
15. Deja árboles pequeños creciendo en las pasturas cuando realiza el chapeo?
a. SI
b. NO
c. Menciones las especies que utiliza

C) RECURSO HÍDRICO 16. ¿Considera que en su finca los suelos retienen el agua de lluvia? a. SI b. NO 17. La finca tiene fuentes de agua naturales (no artificiales ó construidas)? a. SI ____ Cuantas?____ b. NO SI LA RESPUESTA ES NO c. Utiliza una bomba para obtener agua desde fuera de la finca? 18. ¿Siembra árboles para proteger las fuentes de agua? a. SI b. NO c. Menciones las especies que utiliza 19. En su opinión, ¿el agua con que realiza las actividades de la finca es de buena calidad? a. SI b. NO c. Porque? (para cualquier respuesta) 20. ¿Considera usted que el agua de hace 10 o 15 años atrás era mejor, igual o peor que ahora? a. Mejor

b. Igualc. Peor

c. Porque? (para cualquier respuesta)
21. ¿Cuál cree que es la principal causa de la disminución de la calidad agua?
22. ¿Cree que los bosques tienen alguna relación directa con la calidad y producción del agua?,
a. SI
b. NO
23. En su opinión, tener bosques ribereños mejora o empeora la calidad del agua?
a. SI
b. NO
c. Porque? (para cualquier respuesta)
24. ¿Conoce alguna ley que establezca el derecho de propiedad de tierras y regule su uso, en especial donde se ubican las nacientes, zonas de recarga y o riberas de los ríos?
a. SI
b. NO

D) BELLEZA ESCÉNICA

25. ¿Ud cree que en su finca hay algún atractivo que atraiga a los visitantes? Mencione cual
No solo debe enfocarse a atractivos turísticos, sino también visitas de aprendizaje de algo innovador que se esta haciendo en la finca, o alguna forma particular de hacel las cosas etc.
26. ¿Le gustaría recibir visitantes y/o turistas en su finca?
a. Si
b. No (si responde NO, pase a la pregunta No. 29)
27. ¿Le gustaría que su finca fuera visitada para conocer las cosas nuevas que esta haciendo en ella?
a. Si
b. No (si responde NO, pase al literal S.
28. que tipo de visitantes le gustaría recibir?
a. Otros productores, estudiantes, técnicos?
 b. turistas que quieran recorrer su finca y observar aves, fuentes de agua etc. —
c. Turistas que solo buscan alojamiento en fincas
d. Turistas que quieran pasar más de una noche en su finca y que además quierar hacer actividades diarias con ud y la familia

29.	Le gustaría tener visitantes?
	a. Nacionales
	b. Extranjeros
	c. Ambos
30.	¿Mencione cual es la importancia del bosque en su comunidad?
31.	¿Qué cosas habría en la Región Chorotega ó las fincas para que aumenten el turismo de tipo rural?
32.	¿Qué acciones estaría dispuesto a implementar en su finca para mejorar la calidad del agua en las fuentes que abasten a la comunidad o en la Región?
33.	¿Estaría dispuesto a dejar en regeneración natural áreas que se encuentran en laderas con pendientes pronunciadas, o que se ubican cerca de las nacientes o tomas de agua?¿
	a. Si
	b. No

conservar la vegetación natural y el agua en su finca?
Esta pregunta está dirigida a saber si el productor tendría voluntad de cumplir con un contrato para pago de servicios ambientales y el acuerdo obviamente implicaría una retribución económica PERO NO DEBE MENCIONARSE ESTO ULTIMO, por que eso dirigiría la respuesta, el diría: SI.
a. Si
b. No
35. ¿De las siguientes fincas cual tiene mayor valor económico para usted?
Entender las pasturas mejoradas como las no son nativas, no confundirlas con las que producen más o se adaptan mejor. Lo anterior por qué un PSA se diseñaría con usos del suelo que incluyan pasturas mejoradas
a) Finca con predominio de pasturas mejoradas sin árboles:
b) Finca con predominio de pasturas mejoradas con árboles:
d) Finca con predominio de bosques y cercas vivas:
e) Finca con predominio de bosques y pasturas mejoradas :
36. ¿Cuáles son sus planes como productor en los próximos 5 años?
No se leen las respuestas. La respuesta se selecciona de la conversación con el productor pueden haber varias respuestas
a) Incrementar la producción ganadera
b) Mejorar las condiciones ambientales de su finca
c) Generar y vender servicios ambientales
d) Vender la tierra
f) Comprar más tierra
g) Emigrar y emplearse en otra cosa

34. Estaría dispuesto a comprometerse por escrito mediante un acuerdo a

	h) No hacer nada, mantener la finca como esta
	i) Otro
	f) No sabe
	E) PAGO POR SERVICIOS AMBIENTALES
37.	Ha oído hablar de los pagos por servicios ambientales
	a. Si
	b. No
38.	Para ud un pago por servicios ambientales es? (solo una respuesta)
	a. Un regalo o subsidio que se le da a los productores para mejor trabajen
	b. Un crédito con bajos intereses para que inviertan en las fincas
	c. Un pago por la biodiversidad, Agua, carbono que se generan en la fincas
	d. No sabe
	¿Si le otorgaran un incentivo por los beneficios ambientales que ud genera en la finca, que gustaría recibir:
	a. Ayudas en especie por ejemplo semillas, árboles, productos químicos etc.
	b. créditos
	c. disminución de impuestos
	d. capacitación
	e. dinero en efectivo
	f. otros

40.	¿Si recibiera algún incentivo de los anteriores, en que lo invertiría?
41.	¿Existe (n) en la región alguna (s) institución (es) que recaude recursos financieros y pague a los productores por proteger las fuentes de agua biodiversidad, etc.?
	a. Si Organización
	b. No
	Si responden NO
	c. ¿Se podría conformar una?
	d. ¿Quién o quiénes (personas o instituciones) podrían conformarla?
42.	¿Qué instituciones del estado promueven la protección del medio ambiente en su región?
43.	¿Cuál de esas instituciones le genera más confianza?
44.	¿Cuáles cree que son los espacios de participación comunitaria donde se pueda decidir o proponer acciones para el bienestar del la región o el cantón?

45. ¿Qué incentivos cree usted que debería crear el gobierno para ganadería más amigable con el ambiente?	a fomentar una
a) Crear líneas de crédito	
b) fomentar programas de pago de servicios ambientales	
c) Establecer programas de asistencia técnica y capacitación	
d) Crear mecanismos de acceso a mercados diferenciados y Certificación de productos	
e) Otro Cual	
46. ¿Recuerda el caso de alguna propuesta que se haya generado en cantón o región y que haya sido tomada en cuenta como una podel gobierno nacional, regional o local?	

ANEXO 4. Resultados de las muestras analizadas en el laboratorio para la estimación del alamacenamiento de Carbono en el suelo.

	Nombre del productor	Uso de la tierra			Parcela	No. De	Código de muestra		Carbono	Peso seco del suelo dentro	Densidad
No.			Edad	Especie		calicata	Densidad aparente	Muestra de suelo	Total (%)	del cilindro (gr)	aparente (gr/cc)
1	Carlos Mejía	B. Forrajero de Gramíneas	10	Caña	1	1	Gra 11-D	Gra 11-C	2,88	107,73	1,10
2	Carlos Mejía	B. Forrajero de Gramíneas	10	Caña	1	2	Gra 12-D	Gra 12-C	2,52	116,66	1,19
3	Carlos Mejía	B. Forrajero de Gramíneas	10	Caña	1	3	Gra 13-D	Gra 13-C	2,73	101,41	1,03
7	Ulises Rodríguez	B. Forrajero de Gramíneas	5	Caña	3	1	Gra 31-D	Gra 31-C	1,33	132,30	1,35
8	Ulises Rodríguez	B. Forrajero de Gramíneas	5	Caña	3	2	Gra 32-D	Gra 32-C	1,18	111,34	1,13
9	Ulises Rodríguez	B. Forrajero de Gramíneas	5	Caña	3	3	Gra 33-D	Gra 33-C	1,53	122,34	1,25
10	Miguel Paniagua	B. Forrajero de Gramíneas	5	Caña	4	1	Gra 41-D	Gra 41-C	2,44	119,54	1,22
11	Miguel Paniagua	B. Forrajero de Gramíneas	5	Caña	4	2	Gra 42-D	Gra 42-C	2,60	121,72	1,24
12	Miguel Paniagua	B. Forrajero de Gramíneas	5	Caña	4	3	Gra 43-D	Gra 43-C	2,57	120,88	1,23
16	Modesto Bolaños	B. Forrajero de Gramíneas	8	Caña	6	1	Gra 61 -D	Gra 61 -C	2,39	105,33	1,07
17	Modesto Bolaños	B. Forrajero de Gramíneas	8	Caña	6	2	Gra 62 -D	Gra 62 -C	1,62	112,73	1,15
18	Modesto Bolaños	B. Forrajero de Gramíneas	8	Caña	6	3	Gra 63 -D	Gra 63 -C	1,75	125,39	1,28
19	Daniel Espinoza	B. Forrajero de Gramíneas	4	Caña	7	1	Gra 71 -D	Gra 71 -C	4,55	92,59	0,94
20	Daniel Espinoza	B. Forrajero de Gramíneas	4	Caña	7	2	Gra 72 -D	Gra 72 -C	4,33	93,31	0,95
21	Daniel Espinoza	B. Forrajero de Gramíneas	4	Caña	7	3	Gra 73 -D	Gra 73 -C	4,85	92,58	0,94
22	Álvaro Quesada	B. Forrajero de Gramíneas	2	Caña	8	1	Gra 81 -D	Gra 81 -C	2,33	127,89	1,30
23	Álvaro Quesada	B. Forrajero de Gramíneas	2	Caña	8	2	Gra 82 -D	Gra 82 -C	1,88	130,09	1,33
24	Álvaro Quesada	B. Forrajero de Gramíneas	2	Caña	8	3	Gra 83 -D	Gra 83 -C	2,47	125,24	1,28
25	Carlos Mejía	B. Forrajero de Leñosa	8	Crathylia	1	1	Len 11-D	Len 11-C	2,17	119,46	1,22
26	Carlos Mejía	B. Forrajero de Leñosa	8	Crathylia	1	2	Len 12-D	Len 12-C	2,04	117,80	1,20
27	Carlos Mejía	B. Forrajero de Leñosa	8	Crathylia	1	3	Len 13-D	Len 13-C	1,52	94,30	0,96
28	Ulises Rodríguez	B. Forrajero de Leñosa	2	Crathylia	2	1	Len 21-D	Len 21-C	2,25	118,19	1,20
29	Ulises Rodríguez	B. Forrajero de Leñosa	2	Crathylia	2	2	Len 22-D	Len 22-C	1,72	122,14	1,24
30	Ulises Rodríguez	B. Forrajero de Leñosa	2	Crathylia	2	3	Len 23-D	Len 23-C	1,92	113,60	1,16
31	Isaías Álvarez	B. Forrajero de Leñosa	1	Crathylia	3	1	Len 31-D	Len 31-C	2,07	122,59	1,25
32	Isaías Álvarez	B. Forrajero de Leñosa	1	Crathylia	3	2	Len 32-D	Len 32-C	2,24	117,07	1,19

Anexo 4. Continuacion

N T	Nombre del productor	l so de la fierra		ъ.		No. De	Código de muestra		Carbono	Peso seco del suelo dentro	Densidad
No.			Edad	Especie	Parcela	calicata	Densidad aparente	Muestra de suelo	Total (%)	del cilindro (gr)	aparente (gr/cc)
33	Isaías Álvarez	B. Forrajero de Leñosa	1	Crathylia	3	3	Len 33-D	Len 33-C	2,01	121,48	1,24
34	Alvaro Quesada	B. Forrajero de Leñosa	9	Crathylia	4	1	Len 41-D	Len 41-C	1,36	127,85	1,30
35	Alvaro Quesada	B. Forrajero de Leñosa	9	Crathylia	4	2	Len 42-D	Len 42-C	1,95	122,12	1,24
36	Alvaro Quesada	B. Forrajero de Leñosa	9	Crathylia	4	3	Len 43-D	Len 43-C	1,86	127,79	1,30
37	José León	Bosque secundario	22		1	1	B 11-D	B11-C	1,39	137,61	1,40
38	José León	Bosque secundario	22		1	2	B 12-D	B12-C	1,96	126,88	1,29
39	José León	Bosque secundario	22		1	3	B 13-D	B13-C	3,33	120,95	1,23
40	Ulises Rodríguez	Bosque secundario	24		2	1	B 21-D	B 21-C	1,57	103,79	1,06
41	Ulises Rodríguez	Bosque secundario	24		2	2	B 22-D	B 22-C	2,80	107,08	1,09
42	Ulises Rodríguez	Bosque secundario	24		2	3	B 23-D	В 23-С	1,92	113,31	1,15
43	Miguel Paniagua	Bosque secundario	25		3	1	B 31-D	B 31-C	3,11	125,25	1,28
44	Miguel Paniagua	Bosque secundario	25		3	2	B 32-D	В 32-С	1,58	136,71	1,39
45	Miguel Paniagua	Bosque secundario	25		3	3	B 33-D	В 33-С	2,28	120,46	1,23
46	Daniel Castro	Bosque secundario	25		4	1	B 41 -D	B 41 -C	3,30	101,75	1,04
47	Daniel Castro	Bosque secundario	25		4	2	B 42 -D	B 42 -C	3,11	100,13	1,02
48	Daniel Castro	Bosque secundario	25		4	3	B 43 -D	B43 -C	3,35	105,43	1,07
49	Modesto Bolaños	Bosque secundario	22		5	1	B 51 -D	B 51 -C	2,48	145,66	1,48
50	Modesto Bolaños	Bosque secundario	22		5	2	B 52 -D	B 52 -C	2,07	128,90	1,31
51	Modesto Bolaños	Bosque secundario	22		5	3	B 53 -D	B 53 -C	1,95	117,21	1,19
52	José León	Pastura degradada	5		1	1	PD 11-D	PD 11-C	1,08	121,51	1,24
53	José León	Pastura degradada	5		1	2	PD 12-D	PD 12-C	0,95	114,39	1,17
54	José León	Pastura degradada	5		1	3	PD 13-D	PD 13-C	1,33	130,52	1,33
55	Miguel Paniagua	Pastura degradada	10		2	1	PD 21-D	PD 21-C	1,64	128,57	1,31
56	Miguel Paniagua	Pastura degradada	10		2	2	PD 22-D	PD 22-C	1,72	120,75	1,23
57	Miguel Paniagua	Pastura degradada	10		2	3	PD 23-D	PD 23-C	1,37	127,03	1,29
58	Daniel Espinoza	Pastura degradada	6		3	1	PD 31 -D	PD 31 -C	2,71	109,23	1,11

Anexo 4. Continuación

N.T.	Nombre del productor	Nombre del Lag de la tierra	D. 1	Especie	Parcela	No. De	Código de muestra		Carbono	Peso seco del suelo dentro	Densidad
No.		Uso de la tierra	Edad			calicata	Densidad aparente	Muestra de suelo	Total (%)	del cilindro (gr)	aparente (gr/cc)
59	Daniel Espinoza	Pastura degradada	6		3	2	PD 32 -D	PD 32 -C	2,01	114,48	1,17
60	Daniel Espinoza	Pastura degradada	6		3	3	PD 33 -D	PD 33 -C	2,01	119,74	1,22
61	Carlos Mejia	Plantacion forestal	3		1	1	PF 11-D	PF 11-C	3,38	117,51	1,20
62	Carlos Mejia	Plantacion forestal	3		1	2	PF 12-D	PF 12-C	3,37	118,00	1,20
63	Carlos Mejia	Plantacion forestal	3		1	3	PF 13-D	PF 13-C	2,65	126,78	1,29
64	Ulises Rodríguez	Plantacion forestal	16		2	1	PF 21-D	PF 21-C	1,52	123,62	1,26
65	Ulises Rodríguez	Plantacion forestal	16		2	2	PF 22-D	PF 22-C	1,09	121,17	1,23
66	Ulises Rodríguez	Plantacion forestal	16		2	3	PF 23-D	PF23-C	1,16	115,44	1,18
67	Daniel Espinoza	Plantacion forestal	10		3	1	PF 31 -D	PF 31 -C	2,98	96,45	0,98
68	Daniel Espinoza	Plantacion forestal	10		3	2	PF 32 -D	PF 32 -C	4,26	96,43	0,98
69	Daniel Espinoza	Plantacion forestal	10		3	3	PF 33 -D	PF 33 -C	4,83	82,05	0,84
70	Jose Leon	Pastura Mejorada con árboles	4		1	1	PMA 11-D	PMA 11-C	1,65	125,92	1,28
71	Jose Leon	Pastura Mejorada con árboles	4		1	2	PMA 12-D	PMA 12-C	1,43	131,03	1,33
72	Jose Leon	Pastura Mejorada con árboles	4		1	3	PMA 13-D	PMA 13-C	1,71	118,42	1,21
73	Ulises Rodríguez	Pastura Mejorada con árboles	2		2	1	PMA 21-D	PMA 21-C	1,54	117,98	1,20
74	Ulises Rodríguez	Pastura Mejorada con árboles	2		2	2	PMA 22-D	PMA 22-C	1,46	106,86	1,09
75	Ulises Rodríguez	Pastura Mejorada con árboles	2		2	3	PMA 23-D	PMA 23-C	1,47	108,41	1,10
76	Jairo Quiros	Pastura Mejorada con árboles	6		3	1	PMA 31-D	PMA 31-C	4,43	86,50	0,88
77	Jairo Quiros	Pastura Mejorada con árboles	6		3	2	PMA 32-D	PMA 32-C	3,04	93,80	0,96
78	Jairo Quiros	Pastura Mejorada con árboles	6		3	3	PMA 33-D	PMA 33-C	3,93	98,51	1,00
79	Isaias Alvarez	Pastura Mejorada con árboles	6		4	1	PMA 41-D	PMA 41-C	2,75	127,07	1,29
80	Isaias Alvarez	Pastura Mejorada con árboles	6		4	2	PMA 42-D	PMA 42-C	2,18	129,48	1,32
81	Isaias Alvarez	Pastura Mejorada con árboles	6		4	3	PMA 43-D	PMA 43-C	1,79	118,57	1,21

ANEXO 5. Número de individuos registrado en los seis usos de la tierra evaluados en la Región de Chorotega, 2010. BS: Bosque secundarios, PE: pasturas enmalezadas, PF: Plantaciones forestales y PMA: Pasturas mejoradas con arboles.

Especie	Nombre común	BS	PE	PF	PMA	Total
Acrocomia aculeata	Coyol	0,0	0,0	0,0	2,0	0,2
Anacardiun excelsum	Espavel	5,8	0,0	0,0	0,0	2,0
Andira inermis	Almendro de montaña	2,3	5,9	0,0	2,0	1,2
Annona muricata	Guanabana	0,0	0,0	0,0	2,0	0,2
Anona sp.	Anonillo	4,0	0,0	0,0	0,0	1,4
Ardisia revoluta	Tucuico	5,8	5,9	0,0	2,0	2,5
Astronium graveolens	Ron Ron	0,6	0,0	0,0	0,0	0,2
Banara guianensis	Canfinillo	1,7	0,0	0,0	0,0	0,6
Bombacopsis quinata	Pochote	2,3	0,0	0,0	0,0	0,8
Bursera simarouba	Jinocuabe	0,6	0,0	0,0	0,0	0,2
Cassia grandis	Carao	1,7	0,0	0,0	0,0	0,6
Castilla elastica	Hule	0,6	0,0	0,0	0,0	0,2
Cecropia peltata	Guarumo	5,2	0,0	0,0	0,0	1,8
Cedrela odorata	Cedro Amargo	6,9	17,6	0,0	27,5	5,9
Ceiba Pentandra	Ceiba	2,3	0,0	0,0	0,0	0,8
Chrysophyllum cainito	Sapotillo	0,6	0,0	0,0	0,0	0,2
Cinnamomun brenesii	Quizarra	1,2	0,0	0,0	0,0	0,4
Coccoloba sp.	Papaturro	2,9	0,0	0,0	0,0	1,0
Cordia alliodora	Laurel	9,2	5,9	0,0	39,2	7,6
Enterolobium cyclocarpum	Guanacaste	1,2	0,0	0,0	0,0	0,4
Eugenia sp.	Guayabillo	4,6	0,0	0,0	0,0	1,6
Exostema Caribaeum	Quina	0,6	0,0	0,0	0,0	0,2
Gliricidia sepium	Madero Negro	0,6	0,0	0,0	0,0	0,2
Gmelina Arborea	Melina	0,0	0,0	24,3	0,0	12,3
Guazuma ulmifolia	Guacimo	19,7	11,8	0,0	7,8	8,2
Hyperbaena Tonduzii	Naranjillo	2,3	0,0	0,0	0,0	0,8
Inga sp.	Guaba	2,3	0,0	0,0	0,0	0,8
Luehea seemannii	Guacimo Colorado	0,6	0,0	0,0	0,0	0,2
Luehea speciosa	Guacimo Blanco	0,6	0,0	0,0	0,0	0,2
Lysiloma sp.	Quebracho	0,6	0,0	0,0	0,0	0,2
Maclura tinctoria	Mora	0,6	0,0	0,0	0,0	0,2
Miconia argéntea	Santa María	3,5	0,0	0,0	0,0	1,2

Anexo 5. Continuación.

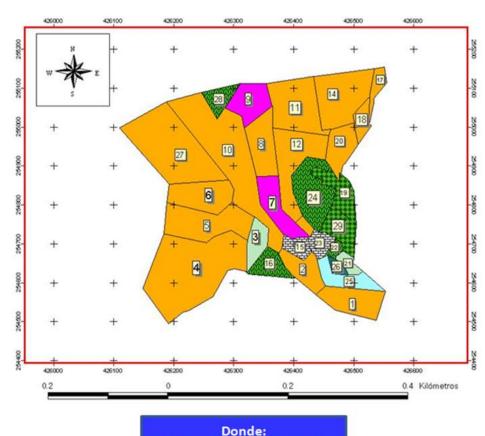
Especie	Nombre común	BS	PE	PF	PMA	Total
Pseudosamanea guachapele	Guayaquil	0,0	5,9	0,0	2,0	0,4
Ricinus communis	Higuerilla	0,0	0,0	0,0	2,0	0,2
Samanea saman	Cenizaro	0,6	5,9	0,0	0,0	0,4
Sapranthus palanga	Palanco	0,0	5,9	0,0	0,0	0,2
Schizolobium parahyba	Gallinazo	0,6	35,3	0,0	11,8	2,7
Simarouba glauca	Aceituno	1,7	0,0	0,0	0,0	0,6
Spondias Mombin	Jobo	0,6	0,0	0,0	0,0	0,2
Stemmadenia sp.	Huevo Caballo	3,5	0,0	0,0	0,0	1,2
Swietenia macrophylla	Caoba	0,6	0,0	0,0	0,0	0,2
Tabebuia ochracea	Cortez Amarillo	1,7	0,0	0,0	2,0	0,8
Tectona Grandis	Teca	0,0	0,0	75,7	0,0	38,3
No. De individuos		173	17	247	51	488

ANEXO 6. Ecuaciones y coeficientes utilizados para estimar el consumo de energía bruta por bovinos.

Parámetro / Ecuación	Descripción
1. Energía neta de mantenimiento (ENm) (MJ día ⁻¹) EN _m =CF _i x (PV) ^{0,75}	CF= Coeficiente para el cálculo de ENm (Vacunos en lactancia = 0,335, Vacunos no lactantes = 0,322)
EN _m =GF _i x (FV)	PV: Peso vivo del animal (kg)
2. Energía neta de actividad (EN _a) (MJ día ⁻¹)	EN _a (MJ día ⁻¹)
$EN_a=C_a \times EN_m$	C_a =Coeficiente para condiciones de alimentación de animal. Pastoreo de vacunos en áreas de alta disponibilidad de forraje = 0,17
3. Energía neta de crecimiento (EN _c) (MJ día ⁻¹)	PV= Peso vivo del animal (kg)
	PC= Peso corporal adulto (kg)
$EN_c=(4,18x\{0,0635x[0,891x(PVx0,96)x~(478/(CxPC)))]^{0.75}x$ (GDPx0,92) ^{1,097} }	C= Coeficiente 0,8 hembras, 1,0 animales castrados, 1,2 toros (NCR 1996)
	GDP= ganancia de peso (kg día ⁻¹)
4. Energía neta de pérdida de peso (EN _{mov}) (MJ día ⁻¹) (Vacas en periodo de lactancia)	Pérdida de peso= Peso que pierde el animal durante la lactancia (kg día ⁻¹)
EN _{mov} =19,7 x Pérdida de peso	
5. Energía neta para lactancia (EN _I) (MJ día ⁻¹)	Grasa=Contenido de grasa de la leche (%)
EN _i ⊨kg de leche día x (1,47+0,40 x Grasa)	
6. Energía neta preñez (EN₂) (MJ día-¹)	C _{preñez} =Coeficiente de preñez.
	En vacunos C _{preñez} = 0,10
EN _p =C _{preñez} x EN _m	EN _m = Energía de mantenimiento (MJ día ⁻¹)
7. Relación entre la energía neta en una dieta de mantenimiento y energía digestible consumida (ENma/ED)	ED= energía digestible expresada en % de la energía bruta
ENma/ED=1,123-(4,092x10 ⁻³ xED)+[(1,126x10 ⁻⁵ x (ED) ²)]-(25,4/ED)	
8. Relación entre la energía neta disponible para el crecimiento en una dieta y la energía digestible consumida (ENcre/ED)	ED= energía digestible expresada en % de la energía bruta
ENma/ED=1,164-(5,160x10 ⁻³ xED)+(1,308x10 ⁻⁵ x(ED) ²) -(37,4/ED)	
9. Energía bruta (EB) (MJ día ⁻¹) ^a	Los términos en la ecuación corresponden a las
$EB = \{[(EN_m + EN_{mov} + EN_a + EN_l + EN_p)/(EN_{ma}/ED)] +$	ecuaciones precedentes de este cuadro
$[(EN_c+EN_{lana})/(EN_{cre}/ED)]]/(ED/100)$	

Donde: ^a Se utilizaron los términos que corresponden a cada categoría de animales.

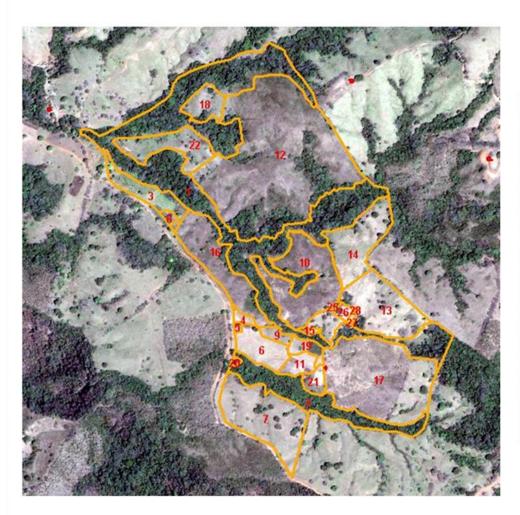
Fuente: IPCC (2006).


ANEXO 7: Factores utilizados para el cálculo de emisiones de metano, dióxido de carbono y óxido nitroso procedentes del manejo del estiércol de bovinos.

Factor	Condiciones	Valor	Fuente	
B₀: Capacidad máxima de producción de CH₄ del	a) Vacas lactantes b) Otros vacunos	a) 0,13 m³ CH₄ kg⁻¹ de SV	IPCC 1996	
estiércol producido por el ganado	b) Gues vasanos	b) $0,10~\text{m}^3\text{kg}^{-1}~\text{CH}_4~\text{de}$ SV		
FCM: Factor de conversión	Clima: cálido	a) FCM _p = 2 %	IPCC (2006)	
del CH ₄ para el sistema de manejo del estiércol en una	Temp. prom. anual = 26 °C	b) $FCM_{ce} = 1.5 \%$		
región climática determinada	a) Sistema de pastoreo (FCM _p)			
	b) Sistema de compostaje extensivo (FCM _{ce})			
Factor de conversión de volumen de CH ₄ a masa de CH ₄			IPCC (2006)	
SM: Fracción del estiércol del	Varía de acuerdo al manejo	SMp(v,t,b) = 0.83	Cálculos	
ganado manejado en el sistema i	aplicado al estiércol en la finca para las diferentes categorías	SMce(v,t,b) = 0,17	propios	
	de animales. SMp= Sistema	SMp(n-h1-2)=0,96		
	pastura. Smce= Sistema compostaje extensivo	SMce(n-h1-2)=0,04		
Cenizas del estiércol de vacunos	No aplica	8 %	IPCC (2006)	
Nretención: Fracción de la	a) Vacas lactantes	a) 0,20 b) 0,07	IPCC (2006)	
ingesta anual de N retenida por el animal	b) Otros vacunos	(kg Nret. animal ⁻¹ año ⁻)(kg Ningesta N animal ⁻¹ año ⁻¹) ⁻¹		
Factor de ajuste para tasas	a) Ganado vacuno de 0-1 año	a) 0,3	IPCC (2006)	
de excreción de N en animales jóvenes	b) Ganado vacuno de 1-2 años	b) 0,6		
FE₃: Factor de emisión para emisiones directas de N₂O	De acuerdo al sistema de	FE ₃ (p) = 0,02	IPCC (2006)	
para el sistema de manejo del	manejo del estiércol	FE_3 (ce) = 0,01		
estiércol		(kg de N₂O-N/kg de		
		N excretado)		
Conversión de N ₂ O-N en N ₂ O		$N_2O = N_2O - N \times (44/28)$	IPCC (2006)	
FC: Fracción de carbono en pastos y suplementos		FC = 0,50	Brown y Lugo 1984, IPCC (1996)	

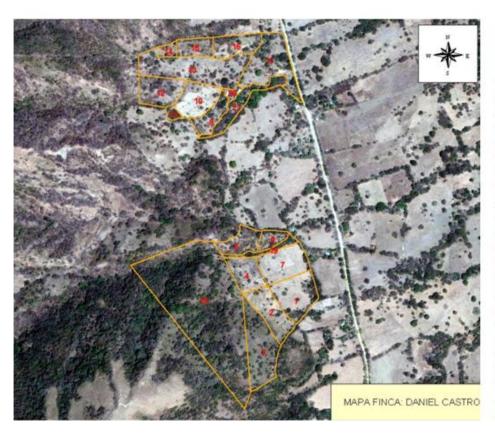
Donde: Los factores referidos por el IPCC (2006) son de aplicación para América Latina.

Informe Final Estudio Balance de Gases Región Chorotega R	Realizado por Programa GAMMA del CATIE 234


FINCA ARNULFO RODRIGUEZ: USO DEL SUELO 2010

ld	Productor	Poligono	Uso	Area (ha
1	Amulfo Rodriguez	1	Pastura Mejorada BDA	1,003
1	Amulfo Rodriguez	2	Pastura Mejorada BDA	0,704
1	Amulfo Rodriguez	3	Banco Forrajero: Maralfalfa	0,479
1	Amulfo Rodriguez	4	Pastura Mejorada BDA	3,886
1	Amulfo Rodriguez	5	Pastura Mejorada BDA	1,640
1	Amulfo Rodriguez	6	Pastura Mejorada BDA	1,150
1	Amulfo Rodriguez	7	Pastura Mejorada ADA	0,874
1	Amulfo Rodriguez	8	Pastura Mejorada BDA	1,038
1	Amulfo Rodriguez	9	Pastura Mejorada ADA	0,833
1	Amulfo Rodriguez	10	Pastura Mejorada BDA	3,437
1	Amulfo Rodriguez	11	Pastura Mejorada BDA	1,656
1	Amulfo Rodriguez	12	Pastura Mejorada BDA	1,592
1	Amulfo Rodriguez	13	Pastura Mejorada BDA	0,116
1	Amulfo Rodriguez	14	Pastura Mejorada BDA	1,709
1	Amulfo Rodriguez	15	Infraestructura	0,314
1	Amulfo Rodriguez	16	Bosque Ripario	0,521
1	Amulfo Rodriguez	17	Pastura Mejorada BDA	0,272
1	Amulfo Rodriguez	18	Pastura Mejorada BDA	0,315
1	Amulfo Rodriguez	19	Plantacion Forestal: Corteza amarilla	0,692
1	Amulfo Rodriguez	20	Pastura Mejorada BDA	0,740
1	Amulfo Rodriguez	21	Banco Forrajero: Maralfalfa	0,206
1	Amulfo Rodriguez	22	Bosque Ripario	0,129
1	Amulfo Rodriguez	23	Infraestructura	0,336
1	Amulfo Rodriguez	24	Bosque Ripario	1,331
1	Amulfo Rodriguez	25	Pastura Natural BDA	0,625
1	Amulfo Rodriguez	26	Pastura Mejorada SA	0,141
1	Amulfo Rodriguez	27	Pastura Mejorada BDA	2,981
1	Amulfo Rodriguez	28	Bosque Ripario	0,403
1	Amulfo Rodriguez	29	Plantacion Forestal: Teca	0,646
	-	ARE	EA TOTAL	29,769

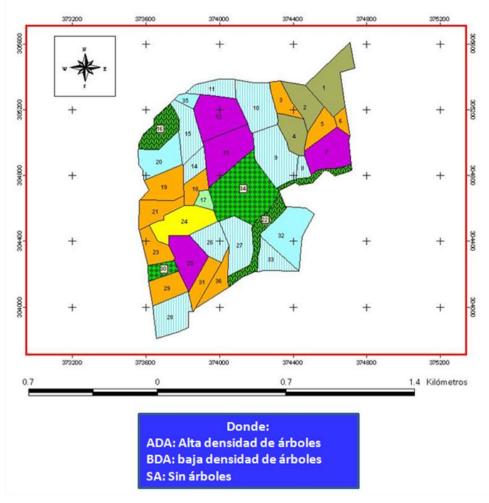
FINCA CARLOS MEJÍAS: USO DEL SUELO 2010


Solutions for environment and development Soluciones para el ambiente y desarrollo

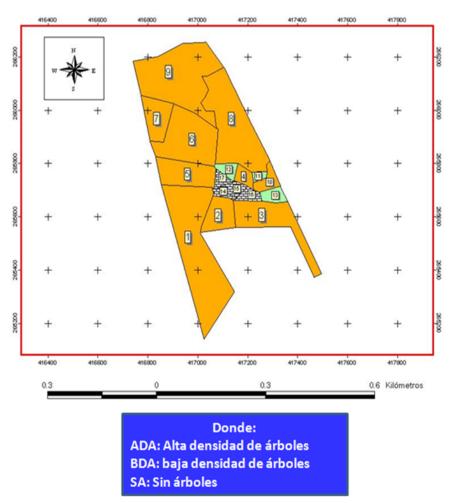
ld	Productor	Poligono	Uso	Area (ha)
2	Carlos Mejia	1	Bosque Ripario	19,247
2	Carlos Mejia	2	Bosque Ripario	3,557
2	Carlos Mejia	3	Pastura Mejorada BDA	1,559
2	Carlos Mejia	4	Pastura Mejorada SA	0,236
2	Carlos Mejia	5	Infraestructura	0,082
2	Carlos Mejia	6	Pastura M ejorada SA	1,524
2	Carlos Mejia	7	Pastura M ejorada BDA	4,540
2	Carlos Mejia	8	Banco Forrajero: Caña	0,157
2		9	Pastura M ejorada BDA	0,356
2	Carlos Mejia	10	Plantacion Forestal: Teca	4,565
2	Carlos Mejia	11	Pastura M ejorada BDA	0,645
2	Carlos Mejia	12	Plantacion Forestal: Teca	16,682
2	Carlos Mejia	13	Pastura Mejorada BDA	3,612
2	Carlos Mejia	13	Pastura M ejorada BDA	0,683
2	Carlos Mejia	14	Pastura M ejorada BDA	3,076
2	Carlos Mejia	15	Banco Forrajero: Cratylia	0,108
2	Carlos Mejia	16	Plantacion Forestal: Teca	3,511
2	Carlos Mejia	17	Plantacion Forestal: Teca	7,708
2	Carlos Mejia	18	Pastura M ejorada BDA	1,104
2	Carlos Mejia	19	Banco Forrajero: Maralfalfa	0,556
2	Carlos Mejia	20	Pastura M ejorada SA	0,062
2	Carlos Mejia	21	Banco Forrajero: Caña	0,493
2	Carlos Mejia	22	Pastura M ejorada BDA	2,231
2	Carlos Mejia	25	Banco Forrajero: Caña	0,058
2	Carlos Mejia	26	Banco Forrajero: Diversificado	0,217
2	Carlos Mejia	27	Banco Forrajero: Caña	0,068
2	Carlos Mejia	28	Infraestructura: Comedero	0,017
		Are	a Total	76,654

Donde:

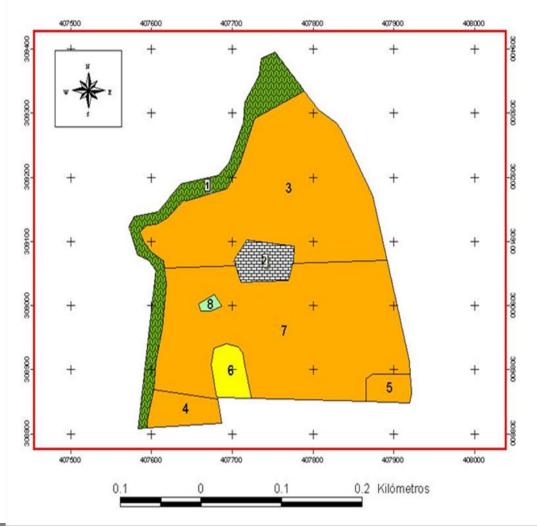
ADA: Alta densidad de árboles BDA: baja densidad de árboles SA: Sin árboles


Finca Daniel Castro: Uso de Suelo 2010

ID	PRODUCTOR	POLIGONO	USO	Area (ha)			
3	Daniel Castro	1	Pastura mejorada ADA	2,007			
3	Daniel Castro	2	Pastura mrejorada BDA	1,680			
3	Daniel Castro	3	Pastura natural ADA	2,671			
3	Daniel Castro	4	Granos básicos	1,253			
3	Daniel Castro	5	Charral	1,078			
3	Daniel Castro	6	Pastura degradada	0,565			
3	Daniel Castro	7	Pastura mejorada BDA	1,879			
3	Daniel Castro	9	Pastura natural ADA	0,959			
3	Daniel Castro	10	Pastura mejorada BDA	1,541			
3	Daniel Castro	11	Tacotal	0,212			
3	Daniel Castro	12	Pastura degradada	1,553			
3	Daniel Castro	13	Pastura degradada	3,616 0,283			
_	Daniel Castro	14	BF (Cratylia)				
3	Daniel Castro	15	Granos Básicos	0,863			
3	Daniel Castro	16	Maralfalfa	1,248			
	Daniel Castro	17	Pastura natural BDA	2,685			
3	Daniel Castro	18	Bosque secundario inter	12,480			
_	Daniel Castro	19	Bosque ripario	0,486			
	Daniel Castro	20	Infraestructura	0,231			
	Daniel Castro	21	Bosque ripario	1,225			
	Area Total						

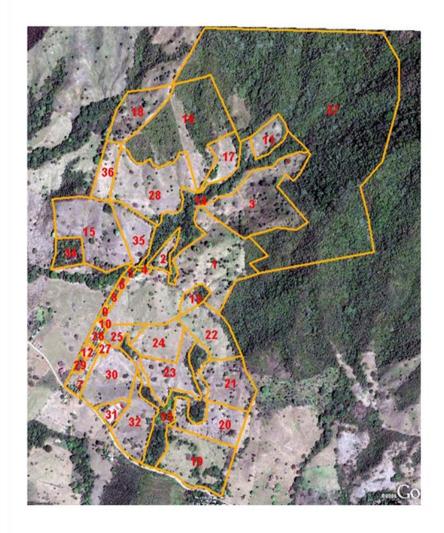

FINCA DANIEL ESPINOZA: USO DEL SUELO 2010

ld	Productor	Poligono	Uso	Area (ha)
4	Daniel E spinoza	1	Pastura Natural SA	6,044
4	Daniel E spinoza	2	Pastura Natural SA	3,521
4	Daniel E spinoza	3	Pastura Mejorada BDA	2,193
4	Daniel E spinoza	4	Pastura Natural SA	3,142
4	Daniel E spinoza	5	Pastura Mejorada BDA	2,311
4	Daniel E spinoza	6	Pastura Mejorada BDA	0,910
4	Daniel E spinoza	7	Pastura Mejorada ADA	5,252
4	Daniel E spinoza	8	Pastura Natural ADA	0,916
4	Daniel E spinoza	9	Pastura Natural ADA	6,918
4	Daniel E spinoza	10	Pastura Natural ADA	5,880
4	Daniel E spinoza	11	Pastura Natural ADA	2,466
4	Daniel E spinoza	12	Pastura Mejorada ADA	6,341
4	Daniel E spinoza	13	Pastura Mejorada ADA	6,553
4	Daniel E spinoza	14	Pastura Natural ADA	1,771
4	Daniel E spinoza	15	Pastura Natural ADA	3,947
4	Daniel E spinoza	16	Bosque Ripario	3,870
4	Daniel E spinoza	17	Banco Forrajero: Caña	0,961
4	Daniel E spinoza	18	Pastura Mejorada BDA	1,989
4	Daniel E spinoza	19	Pastura Mejorada BDA	3,949
4	Daniel E spinoza	20	Pastura Natural BDA	4,320
4	Daniel E spinoza	21	Pastura Mejorada BDA	3,056
4	Daniel E spinoza	22	Bosque Ripario	5,233
4	Daniel E spinoza	23	Pastura Mejorada BDA	2,852
4	Daniel E spinoza	24	Granos Basicos	5,480
4	Daniel E spinoza	25	Pastura Mejorada ADA	4,644
4	Daniel E spinoza	26	Pastura Natural ADA	3,268
4	Daniel E spinoza	27	Pastura Natural ADA	4,940
4	Daniel E spinoza	28	Pastura Natural ADA	4,577
4	Daniel E spinoza	29	Pastura Mejorada BDA	3,050
4	Daniel E spinoza	30	Plantacion Forestal: Pochote	1,460
4	Daniel E spinoza	31	Pastura Mejorada BDA	2,563
4	Daniel E spinoza	32	Pastura Natural BDA	6,444
4	Daniel E spinoza	33	Pastura Natural ADA	2,635
4	Daniel E spinoza	34	Plantacion Forestal: Laurel y Teca	11,451
4	Daniel E spinoza	35	Pastura Natural BDA	0,863
4	Daniel E spinoza	36	Pastura Mejorada BDA	2,280
		Are	a Total	138,050


FINCA ISAÍAS ÁLVAREZ: USO DEL SUELO 2010

ld	Productor	Polígono	Uso	Area (Ha)
5	Isaias Alvarez	1	Pastura Mejorada BDA	7,355
5	Isaias Alvarez	2	Pastura Mejorada BDA	1,383
5	Isaias Alvarez	3	Pastura Mejorada BDA	2,990
5	Isaias Alvarez	4	Pastura Mejorada BDA	0,440
5	Isaias Alvarez	5	Pastura Mejorada BDA	2,064
5	Isaias Alvarez	6	Pastura Mejorada BDA	3,896
5	Isaias Alvarez	7	Pastura Mejorada BDA	1,448
5	Isaias Alvarez	8	Pastura Mejorada BDA	5,382
5	Isaias Alvarez	9	Pastura Mejorada BDA	6,282
5	Isaias Alvarez	10	Pastura Mejorada BDA	0,577
5	Isaias Alvarez	11	Banco Forrajero: Cratylia	0,182
5	Isaias Alvarez	12	Banco Forrajero: Camerún	0,377
5	Isaias Alvarez	13	Banco Forrajero: Maralfalfa	0,476
5	Isaias Alvarez	14	Infraestructura	0,203
5	Isaias Alvarez	15	Infraestructura	0,393
5	Isaias Alvarez	16	Infraestructura	0,351
5	Isaias Alvarez	17	Infraestructura	0,278
		Area	total	34,077

FINCA JAIRO QUIRÓS: USO DEL SUELO 2010

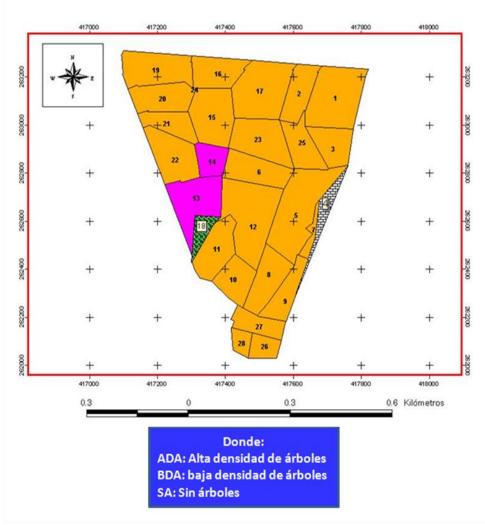


ld	Productor	Poligono	Uso	Area (ha)
6	Jairo Quiros	1	Bosque Ripario	1,884
6	Jairo Quiros	2	Infraestructura	0,598
6	Jairo Quiros	3	Pastura Mejorada BDA	6,813
6	Jairo Quiros	4	Pastura Mejorada BDA	0,640
6	Jairo Quiros	5	Pastura Mejorada BDA	0,359
6	Jairo Quiros	6	Granos Basicos	0,484
6	Jairo Quiros	7	Pastura Mejorada BDA	8,181
6	Jairo Quiros	8	Banco Forrajero: Caña	0,067
		Area T	otal	19,026

Donde:

ADA: Alta densidad de árboles BDA: baja densidad de árboles SA: Sin árboles

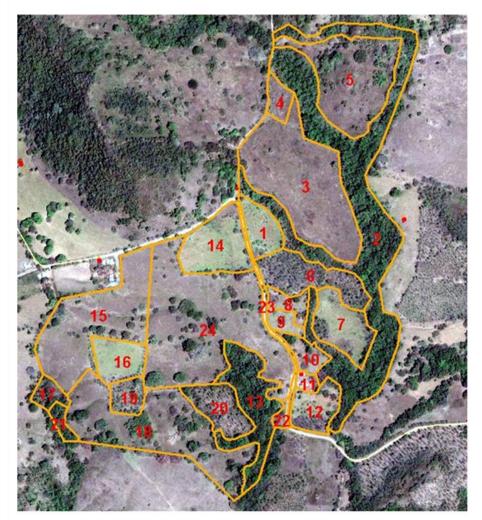
FINCA JOSE LEÓN VARGAS: USO DEL SUELO 2010



ld	Productor	Poligono	Uso	Area (ha)
7	Jose Leon Vargas	1	Pastura Mejorada ADA	11,710
7	Jose Leon Vargas	2	Pastura Mejorada ADA	0,800
7	Jose Leon Vargas	3	Pastura Mejorada ADA	6,761
7	Jose Leon Vargas	4	Pastura Mejorada BDA	0,099
7	Jose Leon Vargas	5	Pastura Natural ADA	0.145
7	Jose Leon Vargas	6	Pastura Degradada	0,142
7	Jose Leon Vargas	7	Pastura Mejorada BDA	0,912
7	Jose Leon Vargas	8	Banco Forrajero: Camerúm	0,207
	Jose Leon Vargas	9	Banco Forrajero: Maralfalfa	0,139
	Jose Leon Vargas	10	Banco Forrajero: Caña	0.079
	Jose Leon Vargas	11	Pastura Natural SA	1,354
_	Jose Leon Vargas	12	Banco Forrajero: Maralfalfa	0,147
	Jose Leon Vargas	13	Bosque Ripario	0,736
	Jose Leon Vargas	14	Bosque Ripario	5,926
_	Jose Leon Vargas	15	Pastura Mejorada BDA	5,553
	Jose Leon Vargas	16	Bosque Secundario	9,340
	Jose Leon Vargas	17	Pastura Mejorada BDA	1,720
	Jose Leon Vargas	18	Pastura Natural SA	2.869
	Jose Leon Vargas	19	Pastura Mejorada BDA	4,857
	Jose Leon Vargas	20	Pastura Mejorada BDA	3.057
	Jose Leon Vargas	21	Pastura Natural SA	3,132
	Jose Leon Vargas	22	Pastura Mejorada BDA	2,867
	Jose Leon Vargas	23	Pastura Meiorada BDA	3.050
_	Jose Leon Vargas	24	Pastura Mejorada BDA	2.293
_	Jose Leon Vargas	25	Pastura Natural SA	0.920
	Jose Leon Vargas	26	Banco Forrajero: Maralfalfa	0.445
	Jose Leon Vargas	27	Infraestructura	0.193
	Jose Leon Vargas	28	Pastura Natural SA	5.827
	Jose Leon Vargas	29	Granos Basicos	0.197
	Jose Leon Vargas	30	Pastura Mejorada BDA	3,402
	Jose Leon Vargas	31	Granos Basicos	0,776
	Jose Leon Vargas	32	Pastura Mejorada BDA	2,975
	Jose Leon Vargas	33	Bosque Ripario	4,440
	Jose Leon Vargas	34	Pastura Mejorada BDA	1,174
_	Jose Leon Vargas	35	Pastura Mejorada BDA	2,252
	Jose Leon Vargas	36	Pastura Mejorada BDA	1,482
	Jose Leon Vargas	37	Bosque Secundario	44,223
		Area To		136,201

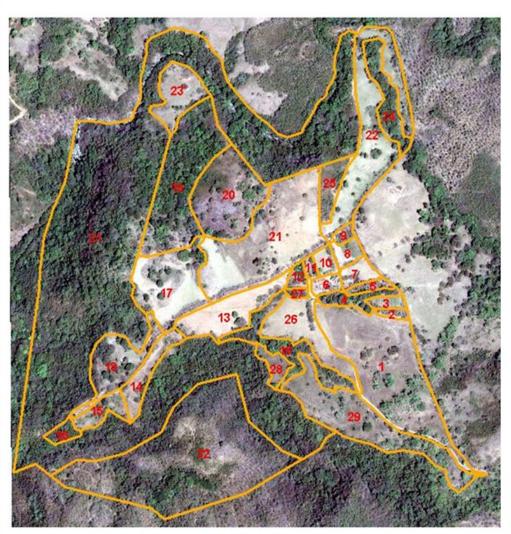
Donde:

ADA: Alta densidad de árboles; BDA: baja densidad de árboles y SA: Sin árboles


FINCA JUVENAL SANCHEZ: USO DEL SUELO 2010

ld	Productor	Poligono	Uso	Area (ha)	
8	Juvenal Sanchez	1	Pastura Mejorada BDA	5,505	
8	Juvenal Sanchez	2	Pastura Mejorada BDA	2,535	
8	Juvenal Sanchez	3	Pastura Mejorada BDA	2,456	
8	Juvenal Sanchez	4	Infraestructura: Casas y Corral	1,263	
8	Juvenal Sanchez	5	Pastura Mejorada BDA	6,488	
8	Juvenal Sanchez	6	Pastura Mejorada BDA	3,102	
8	Juvenal Sanchez	7	Pastura Mejorada BDA	0,629	
8	Juvenal Sanchez	8	Pastura Mejorada BDA	3,119	
8	Juvenal Sanchez	9	Pastura Mejorada BDA	2,255	
8	Juvenal Sanchez	10	Pastura Mejorada BDA	2,370	
8	Juvenal Sanchez	11	Pastura Mejorada BDA	3,141	
8	Juvenal Sanchez	12	Pastura Mejorada BDA	6,350	
8	Juvenal Sanchez	13	Pastura Mejorada ADA	4,142	
8	Juvenal Sanchez	14	Pastura Mejorada ADA	1,643	
8	Juvenal Sanchez	15	Pastura Mejorada BDA	4,083	
8	Juvenal Sanchez	16	Pastura Mejorada BDA	2,734	
8	Juvenal Sanchez	17	Pastura Mejorada BDA	5,311	
8	Juvenal Sanchez	18	Bosque Secundario	1,024	
8	Juvenal Sanchez	19	Pastura Mejorada BDA	3,975	
8	Juvenal Sanchez	20	Pastura Mejorada BDA	3,003	
8	Juvenal Sanchez	21	Pastura Mejorada BDA	2,089	
8	Juvenal Sanchez	22	Pastura Mejorada BDA	3,664	
8	Juvenal Sanchez	23	Pastura Mejorada BDA	3,915	
8	Juvenal Sanchez	24	Infraestructura	0,013	
8	Juvenal Sanchez	25	Pastura Mejorada BDA	2,510	
8	Juvenal Sanchez	26	Pastura Mejorada BDA	1,170	
8	Juvenal Sanchez	27	Pastura Mejorada BDA	1,845	
8	Juvenal Sanchez	28	Pastura Mejorada BDA	0,795	
Г	Area Total				

FINCA MARGARITA GONZALES: USO DEL SUELO 2010

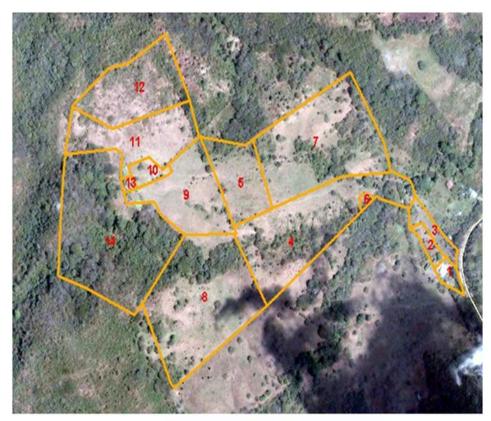


ld	Productor	Poligono	Uso	Area (ha)
9	Margarita Gonzales	1	Pastura Mejorada BDA	0,944
9	Margarita Gonzales	2	Bosque Ripario	10,137
9	Margarita Gonzales	3	Pastura Mejorada BDA	5,583
9	Margarita Gonzales	4	Banco Forrajero: Caña	0,479
9	Margarita Gonzales	5	Pastura Mejorada BDA	3,892
9	Margarita Gonzales	6	Plantacion Forestal: Teca	1,893
9	Margarita Gonzales	7	Pastura Natural BDA	1,601
9	Margarita Gonzales	8	Banco Forrajero: Camerúm	0,496
9	Margarita Gonzales	9	Banco Forrajero: Caña	0,385
9	Margarita Gonzales	10	Pastura Mejorada BDA	0,591
9	Margarita Gonzales	11	Infraestructura	0,217
9	Margarita Gonzales	12	Pastura Mejorada BDA	1,073
9	Margarita Gonzales	13	Bosque Ripario	2,377
9	Margarita Gonzales	14	Bosque Ripario	1,960
9	Margarita Gonzales	15	Pastura Natural BDA	12,309
9	Margarita Gonzales	16	Pastura Mejorada SA	1,094
9	Margarita Gonzales	17	Bosque Ripario	0,438
9	Margarita Gonzales	18	Pastura Mejorada ADA	5,306
9	Margarita Gonzales	19	Pastura Mejorada ADA	0,624
9	Margarita Gonzales	20	Bosque Ripario	1,275
9	Margarita Gonzales	21	Bosque Ripario	0,292
9	Margarita Gonzales	22	Pastura Degradada	0,168
9	Margarita Gonzales	23	Infraestructura	0,420
9	Margarita Gonzales	24	Pastura Mejorada BDA	12,309
	Area total			

Donde:

ADA: Alta densidad de árboles; BDA: baja densidad de árboles y SA: Sin árboles

FINCA MIGUEL PANIAGUA: USO DEL SUELO 2010

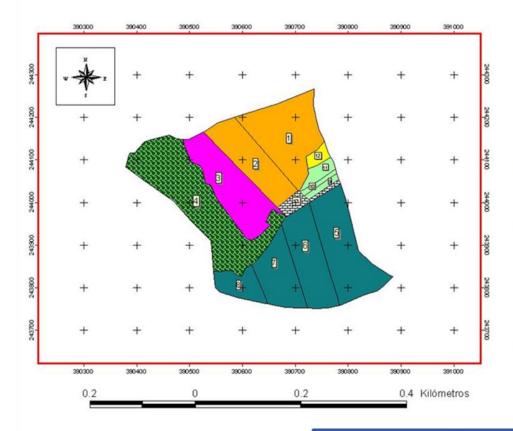


	Solucion				
Id	Productor	Poligono	Uso	Area (ha)	
	Miguel Paniagua	1	Pastura Natural BDA	7,866	
	Miguel Paniagua	2	Banco Forrajero: Caña	0,235	
_	Miguel Paniagua	3	Plantacion Forestal: Teca	0,346	
10	Miguel Paniagua	4	Bosque Ripario	0,814	
10	Miguel Paniagua	5	Banco Forrajero: Maralfalfa	0,339	
	Miguel Paniagua	6	Infraestructura	0,419	
10	Miguel Paniagua	7	Pastura Mejorada BDA	0,639	
10	Miguel Paniagua	8	Banco Forrajero: Camerún	0,535	
10	Miguel Paniagua	9	Plantacion Forestal: Teca	0,252	
10	Miguel Paniagua	10	Banco Forrajero: Caña	0,456	
10	Miguel Paniagua	11	Banco Forrajero: Maralfalfa	0,204	
10	Miguel Paniagua	12	Banco Forrajero: Maralfalfa	0,334	
10	Miguel Paniagua	13	Pastura Natural BDA	2,480	
10	Miguel Paniagua	14	Pastura Degradada	1,306	
10	Miguel Paniagua	15	Tacotal	0,871	
10	Miguel Paniagua	16	Bosque Ripario	2,257	
10	Miguel Paniagua	17	Pastura Mejorada BDA	3,774	
10	Miguel Paniagua	18	Pastura Mejorada BDA	2,405	
10	Miguel Paniagua	19	Bosque Secundario	5,571	
10	Miguel Paniagua	20	Pastura Natural ADA	4,054	
10	Miguel Paniagua	21	Pastura Natural ADA	7,254	
10	Miguel Paniagua	22	Pastura Degradada	5,384	
10	Miguel Paniagua	23	Pastura Natural BDA	1,801	
10	Miguel Paniagua	24	Bosque Ripario	1,633	
10	Miguel Paniagua	25	Pastura Degradada	1,016	
10	Miguel Paniagua	26	Pastura Natural BDA	2,524	
10	Miguel Paniagua	27	Banco Forrajero: Maralfalfa	0,177	
10	Miguel Paniagua	28	Pastura Degradada	0,571	
	Miguel Paniagua	29	Pastura Natural BDA	4,800	
	Miguel Paniagua	30	Tacotal	0,401	
10	Miguel Paniagua	31	Bosque Ripario	45,538	
	Miguel Paniagua	32	Bosque Secundario	14,757	
	Area Total				

Donda

ADA: Alta densidad de árboles; BDA: baja densidad de árboles y SA: Sin árboles

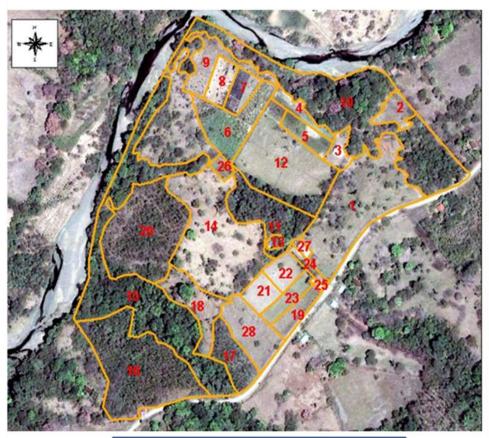
FINCA MODESTO BOLAÑOS: USO DEL SUELO 2010



Donde: ADA: Alta densidad de árboles BDA: baja densidad de árboles SA: Sin árboles

ld	Productor	Poligono	Uso	Area (ha)
11	Modesto Bolaños	1	Infraetructura	0,371
11	Modesto Bolaños	2	Granos Basicos	0,393
11	Modesto Bolaños	3	Pastura Natural BDA	0,666
11	Modesto Bolaños	4	Pastura Natural ADA	6,654
11	Modesto Bolaños	5	Pastura Natural BDA	2,498
11	Modesto Bolaños	6	Banco Forrajero: Caña	0,097
11	Modesto Bolaños	7	Pastura Natural ADA	7,211
11	Modesto Bolaños	8	Pastura Natural BDA	7,913
11	Modesto Bolaños	9	Pastura Natural BDA	3,712
11	Modesto Bolaños	10	Pastura Natural BDA	0,518
11	Modesto Bolaños	11	Pastura Natural BDA	3,684
11	Modesto Bolaños	12	Plantacion Forestal: Teca	3,960
11	Modesto Bolaños	13	Pastura Natural BDA	0,122
11	Modesto Bolaños	14	Bosque Secundario	9,037
	46,836			

FINCA RAFAEL GUEVARA: USO DEL SUELO 2010



ld	Productor	Polígono	Uso	Area (ha)
12	Rafael Guevara	1	Pastura Mejorada BDA	3,539
12	Rafael Guevara	2	Pastura Mejorada BDA	2,438
12	Rafael Guevara	3	Pastura Mejorada ADA	3, 191
12	Rafael Guevara	4	Bosque Secundario	5,657
12	Rafael Guevara	5	Pastura Mejorada SA	3,474
12	Rafael Guevara	6	Pastura Mejorada SA	2,552
12	Rafael Guevara	7	Pastura Mejorada SA	1,979
12	Rafael Guevara	8	Pastura Mejorada SA	0,969
12	Rafael Guevara	9	Banco Forrajero: Maralfalfa	0,183
12	Rafael Guevara	10	Banco Forrajero: Caña	0,154
12	Rafael Guevara	11	Banco Forrajero: Maralfalfa	0,370
12	Rafael Guevara	12	Granos Basicos	0,263
12	Rafael Guevara	13	Infraestructura	0,418
Area Total				

Donde: ADA: Alta densidad de árboles; BDA: baja densidad de árboles y SA: Sin árboles

FINCA ULISES RODRIGUEZ: USO DEL SUELO 2010

ld	Productor	Polígono	Uso	Area (ha)	
13	Ulises Rodriguez	1	Pastura Mejorada BDA	1,932	
13	Ulises Rodriguez	2	Pastura Degradada	0,228	
13	Ulises Rodriguez	3	Infraestructura	0,173	
13	Ulises Rodriguez	4	Banco Forrajero: Caña	0,201	
13	Ulises Rodriguez	5	Banco Forrajero: Camerúm	0,266	
13	Ulises Rodriguez	6	Granos Basicos	0,739	
13	Ulises Rodriguez	7	Banco Forrajero: Maralfalfa	0,241	
13	Ulises Rodriguez	8	Pastura Degradada	0,262	
13	Ulises Rodriguez	9	Pastura Degradada	0,474	
13	Ulises Rodriguez	10	Bosque Ripario	2,966	
13	Ulises Rodriguez	11	Bosque Secundario	0,810	
13	Ulises Rodriguez	12	Pastura Mejorada BDA	1,617	
13	Ulises Rodriguez	13	Infraestructura	0,045	
13	Ulises Rodriguez	14	Pastura Mejorada BDA	3,225	
13	Ulises Rodriguez	15	Bosque Ripario	2,748	
13	Ulises Rodriguez	16	Plantacion Forestal: Melina	1,918	
13	Ulises Rodriguez	17	Plantacion Forestal: Pochote	0,465	
13	Ulises Rodriguez	18	Pastura Mejorada BDA	0,589	
13	Ulises Rodriguez	19	Banco Forrajero: Camerúm	0,249	
13	Ulises Rodriguez	20	Plantacion Forestal: Melina	1,654	
	Ulises Rodriguez	21	Banco Forrajero: Cratylia	0,245	
13	Ulises Rodriguez	22	Banco Forrajero: Maralfalfa	0,250	
13	Ulises Rodriguez	23	Banco Forrajero	0,248	
13	Ulises Rodriguez	24	Infraestructura	0,097	
13	Ulises Rodriguez	25	Infraestructura	0,023	
	Ulises Rodriguez	26	Granos Basicos	0,091	
13	Ulises Rodriguez	27	Pastura Mejorada BDA	0,615	
13	Ulises Rodriguez	28	Infraestructura	0,053	
	Area Total				