Nota Técnica

PROPAGACION in vitro DE Phalaenopsis (ORCHIDACEAE) MEDIANTE EL CULTIVO DE SECCIONES DE EJES FLORALES DESPUÉS DE LA SENESCENCIA DE LAS FLORES

Víctor M. Jiménez *
Eric Guevara 2/*

ABSTRACT

Propagation of Phalaenopsis (Orchidaceae) through in vitro culture of nodal sections from senescent flower stalks. Nodal cuttings from senescent flower stalks of Phalaenopsis hybrids were disinfected twice and put on modified MS media low in calcium and containing organic additives (vitamines, adenine, coconut milk, activated charcoal, growth regulators, sucrose and glucose). Activated charcoal reduced the negative effects of phenolic substances released by the explant. Three different responses were observed: no growth, vegetative growth and reproductive growth. Vegetative buds rapidly produced leaves and roots. Flower buds developed into an inflorescence with nodal segments. These were cut and subcultivated on a fresh medium, where they started vegetative growth. After six months, rooted explants were successfully transferred to greenhouse conditions.

INTRODUCCION

El género Phalaenopsis representa uno de los grupos de orquídeas más apreciados por el colorido y la duración de sus flores. A diferencia de otras especies de orquídeas, la forma de reproducción es difícil, ya que su crecimiento monopodial lento ha dificultado la multiplicación vegetativa de materiales selectos y la reproducción sexual se ha visto agravada en algunos híbridos por la presencia de altos niveles de esterilidad (Gil, 1987). Por ello, varias formas de multiplicación clonal in vitro han sido desarrolladas, dentro de las cuales la más exitosa ha sido el uso de segmentos del eje floral (Scully, 1966; Arditti et al., 1975; Arditti y Ernst, 1993), y en menor grado de segmentos de hojas (Tanaka y Sakanishi, 1977; Arditti y Ernst, 1993).

En todos los trabajos consultados, con la excepción de dos (resumidos en Arditti y Ernst, 1993), se han utilizado ejes florales jóvenes previo a la antesis floral, o cuando las primeras flores están comenzando a abrir. Esto constituye una limitante para la utilización de la planta con fines ornamentales.

El objetivo de este trabajo fue explorar el potencial de las yemas de escapos florales de Phaelenopsis con flores senescentes sobre la generación y multiplicación de plantas.

MATERIAL Y MÉTODOS

Se utilizaron ejes florales viejos, los cuales habían perdido todas sus flores, provenientes de híbridos comerciales de Phalaenopsis. Algunos de estos materiales fueron tomados de plantas en invernadero sometidos a riego por aspersión, mientras que otros se tomaron de lugares totalmente...
expuestos, protegidos únicamente por un techo pero donde el riego fue localizado a las raíces. Se siguió el proceso de desinfección y diseción en dos etapas descrito por Intuwong et al. (1972). A saber, se cortaron los escapos por encima del último nudo, se fructaron con gasa con alcohol (95°), se secionaron en segmentos con aproximadamente 2 cm de entrenudo a cada lado del nudo, y se desinfectaron con una solución de hipoclorito de sodio (0.525% v/v) adicionada con una gota de Tween 80 por cada 100 ml de solución, por 15 min. En condiciones asépticas se eliminaron las brácteas de las yemas y se desinfectaron de nuevo con una solución de hipoclorito de sodio (0.2625% v/v) con Tween 80 por 10 min en agitación. Luego se lavaron tres veces con agua destilada estéril. Se eliminó los extremos de los segmentos, dejando 1,0-1,5 cm de entrenudo a cada lado del nudo. El corte inferior se hizo en diagonal para facilitar la entrada del segmento en el medio de cultivo, en el cual los explantes se colocaron en forma vertical, introduciéndolos hasta que la yema quedara al nivel de la superficie. Se utilizaron yemas terminales, nudos mediales localizados por debajo de las flores y los primeros nudos basales del escapo.

Para el establecimiento inicial del material se utilizó una modificación del medio de cultivo de Murashige y Skoog (MS)(1962) con la mitad de la concentración de los macronutrientes, excepto el CaCl\textsubscript{2}.2H\textsubscript{2}O que se añadió a una concentración de 2,9 mg/L, y la concentración normal de micronutrientes. Se adicionó además 10 mg/L de tiamina, 1 mg/L de ácido nicotínico, 1 mg/L de piridoxina, 100 mg/L de inositol, 0,5 mg/L de 2,4-D, 3 mg/L de BAP, 0,86 mg/L de kinetina, 5 mg/L de adena, 200 ml/L de agua de coco, 10 g/L de manitol, 10 g/L de sacarosa y 10 g/L de glucosa. En un experimento preliminar se observó un efecto beneficioso de 0,5 g/L, por lo que se continuó su utilización. El pH se ajustó a 5,2 y se añadió 8 g/L de agar como agente gelificante. Se vertió 15 ml de medio por tubo de 18 X 150 mm, los cuales fueron cubiertos con capuchas de aluminio previo al autoclave a 1,07 kg/cm2 y 121°C por espacio de 25 min.

Los explantes se colocaron en una cámara de crecimiento con una temperatura de 26-30°C y un fotoperiodo de 24 h de luz (2600 lux).

Aquellos explantes en los que se observó el desarrollo de agentes contaminantes fueron sometidos de nuevo al proceso de desinfección mencionado anteriormente y se colocaron en medio fresco. En algunos casos, este procedimiento tuvo que repetirse varias veces.

Se evaluó contaminación, recuperación de segmentos contaminados mediante desinfecciones sucesivas y formación de brotes vegetativos y florales, así como la reversión de los últimos hacia vegetativos.

Los nudos que tuvieron crecimiento vegetativo fueron transferidos al mismo medio, pero contenido en un frasco del tipo de comida para bebé, desecando los restos del escapo. Posteriormente, aquellos explantes que no formaron raíces o que éstas eran muy pequeñas, se transfirieron a un medio MS modificado, (Arditti y Ernst, 1992) compuesto por la mitad de la concentración de los macronutrientes, la concentración normal de micronutrientes, 0,1 mg/L de tiamina, 0,5 mg/L de ácido nicotínico, 0,5 mg/L de piridoxina, 100 mg/L de inositol, 20 g/L de sacarosa y 0,5 g/L de carbón activado. El pH se ajustó a 5,5 y se añadió 8 g/L de agar como agente gelificante. Se vertió 25 ml de medio por frasco de cultivo. Las condiciones de autoclave fueron las mismas citadas anteriormente.

Las plantas formadas fueron transferidas a condiciones de invernadero, colocándolas en vermiculita previamente humedecida y contenida en frascos plásticos blancos, los cuales se cubrieron las dos primeras semanas con una lámina de plástico para envolver alimentos. La aclimatación de las plantas se hizo a partir de la segunda semana, quitando el plástico de los recipientes por espacio de 30 a 60 min/día, y asperjando las plantas con agua destilada.

Los protocolos aquí descritos fueron verificados 3 veces en experimentos independientes.

RESULTADOS

Se observó mayor contaminación, principalmente fungosa, en los explantes tomados de plantas mantenidas en invernadero (52%) en comparación con las que se encontraban en lugares cubiertos (15%). Esta se observa principalmente a nivel de la cicatriz de las brácteas disectadas. De los 27 explantes contaminados inicialmente, se redesinfectaron únicamente 9 explantes, en los cuales la proliferación fungosa era leve en ese momento. Se logró recuperar 4 explantes (Cuadro 1). La aplicación de desinfecciones sucesivas dañaron el tejido y retardaron el desarrollo de las yemas.

Durante los primeros días se observó en todos los explantes la liberación de exudados al medio de
Cuadro 1. Respuesta morfológica de segmentos nodales de inflorescencias senescentes de *Phalaenopsis* después de 3 meses de cultivo. Datos expresados en número de explantos.

<table>
<thead>
<tr>
<th>Posición en el tallo</th>
<th>No.</th>
<th>Contaminados</th>
<th>Recuperación**</th>
<th>Expresión</th>
<th>Sin respuesta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 2 >3</td>
<td>Vegetativa</td>
<td>Floral*</td>
</tr>
<tr>
<td>Intermedio</td>
<td>53</td>
<td>23</td>
<td>1 1 2</td>
<td>13</td>
<td>5 (5)</td>
</tr>
<tr>
<td>Basal</td>
<td>2</td>
<td>1</td>
<td>0 0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Terminal</td>
<td>8</td>
<td>4</td>
<td>0 0 0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* Entre paréntesis se indica el número de explantos florales que revirtieron hacia crecimiento vegetativo una vez seccionados y transferidos a un medio fresco.

** Explantos que presentaron contaminación inicial y fueron redeseñificados 1, 2 o más veces.

cultivo, lo cual afectó desfavorablemente su crecimiento. La adición de carbón activado al medio redujo el efecto de los exudados y permitió un mayor aumento inicial del volumen de los explantos.

El Cuadro 1 presenta la respuesta obtenida al cabo de 3 meses de cultivo *in vitro*. Las yemas terminales se necrosaron rápidamente, sin manifestar respuesta alguna. Lo mismo ocurrió con el primer nudo basal de cada escapo. Los explantos medulares respondieron de 3 maneras: ausencia de crecimiento, formación de brotes vegetativos y producción de escapos florales. Aquellas yemas inducidas hacia crecimiento vegetativo formaron rápidamente hojas, mientras que las que expresaron un desarrollo floral presentan un tallo floral compuesto por nudos y desprovisto de hojas. El seccionamiento en nudos de estos tallos y su transferencia a medio fresco induce el desarrollo vegetativo de las yemas axilares.

En general la mejor respuesta fue observada con los segmentos de mayor grosor, situados en la parte media de la inflorescencia. Es interesante hacer notar que en algunos casos se observó la formación de dos brotes a partir de una sola yema. Con la formación de las primeras hojas se observó en la mayoría de los explantos la aparición de raíces vigorosas (Figura 1). Casi todos aquellos explantos que formaron brotes vegetativos desarrollaron eventualmente raíces en el mismo medio de cultivo. En los que tuvieron un desarrollo lento, la transferencia de los explantos a un medio desprovisto de reguladores de crecimiento, produjo el crecimiento satisfactorio de las raíces. Todos los explantos enraizados fueron transferidos a condiciones de invernadero después de 4 a 6 meses, en donde continuaron su crecimiento (Figura 2). Todas las plantas se aclimataron satisfactoriamente.

DISCUSION

La mayor contaminación de los explantos tomados de *Phalaenopsis* cultivadas en invernadero...
coincide con la tendencia general observada en cultivo in vitro. El hecho de que la redesinfección de explantes contaminados permita recuperar plantas sanas indica que la contaminación es principalmente de origen superficial al tallo. La presencia de una mayor cantidad de agentes contaminantes se ve favorecida por el salpique, producto del riego por aspersión y por estar localizadas en un espacio abierto, lo que favorece el arrastre de esporas y partículas por viento. Por lo tanto, es preferible que las plantas que van a ser utilizadas reciban riego localizado, lo que limita la contaminación y aumenta las posibilidades de éxito in vitro. Es probable que el uso de fungicidas en forma previa a la planta pueda representar un factor positivo. La presencia de brácteas como mecanismo de protección de la yema limita en alto grado la eficiencia en la desinfección de los tejidos, puesto que en los intersticios de las mismas hay acúmulo de gran cantidad de agentes contaminantes. Ello justifica el proceso de desinfección en dos pasos.

El hipoclorito de sodio, compuesto utilizado comúnmente como desinfectante, también produce cierto daño en los tejidos, que se pudo observar en los casos en que hubo que hacer de desinfecciones sucesivas, por problemas de contaminación inicial.

La mayoría de los procedimientos de cultivo de segmentos del tallo floral de Phalaenopsis involucran el establecimiento inicial en un medio de cultivo líquido en agitación para diluir las sustancias exudadas por el tejido. El presente estudio permitió la regeneración y crecimiento de plantas en medio sólido, debido probablemente a la adición de carbón activado, que limitó el efecto negativo de los exudados al adsorbido o acomplejar algunas de esas sustancias. La siembra directa en medio de cultivo sólido, sin la necesidad de un tratamiento antioxidante al tejido, ha sido también utilizado por Ernst (1994).

Las transferencias sucesivas para eliminar el efecto de los fenoles son otra opción, pero es muy laboriosa, con un alto coste en reactivos.

El primer nudo basal no brotó en ninguno de los casos. Arditti (1987) considera que esto se debe generalmente a que este nudo no tiene yema axilar. Por otra parte, las yemas terminales tienen un alto grado de diferenciación hacia el estado reproductivo, más difícil de revertir que las yemas inferiores latentes, a las cuales se les indujo rápidamente hacia el estado vegetativo. Esto concuerda con lo observado por Arditti y Ernst (1992).

En yemas situadas en la zona intermedia del tallo de la inflorescencia y que formaron escapos florales, fue posible revertir el proceso mediante la rápida transferencia de estos explantes a un medio fresco. Este factor se debe en gran parte a la presencia de dos citoquininas en el medio de cultivo (BAP, Kin) así como a un precursor de las mismas (adenina), que promueven el crecimiento vegetativo de los explantes, oponiéndose al floral. La transferencia sucesiva en el medio utilizado reforzaría la orientación hacia un crecimiento vegetativo. Una respuesta similar fue observada por Oviedo y Guevara (1988) en yemas florales de Limonium sinuatum. Algunos de los explantes así obtenidos regeneraron más de dos yemas, las cuales pudieron ser seleccionadas y colocadas nuevamente en el medio de cultivo. Esto permitiría entonces, a pesar de que el porcentaje de contaminación inicial sea en algunos casos alto, obtener un número suficiente de plantas a través de la multiplicación por brotes laterales.

La gran facilidad con que se formaron las raíces en los tallos vegetativos regenerados contrasta con lo informado por Ernst (1994), quien observó la inhibición de la formación de raíces con altas concentraciones de citoquina. Es probable que en el caso del presente trabajo, el uso de carbón activado desde el inicio evitara el efecto inhibitorio de estos reguladores.

El método descrito en este trabajo demuestra la posibilidad de obtener plantas de Phalaenopsis a partir de inflorescencias senescentes cultivadas sobre un medio sólido. Un aspecto interesante es la obtención de plantas completas y transferidas a condiciones de campo en un período de aproximadamente 6 meses, el cual es relativamente corto. Ello abre la posibilidad de una mejor utilización de las plantas tanto en su aspecto ornamental, como en su aspecto multiplicativo, considerados como antagónicos en su utilización inmediata por el floricultor.

RESUMEN

Segmentos nodales provenientes de inflorescencias senescentes de híbridos de Phalaenopsis fueron desinfectados dos veces y colocados en un medio sólido MS modificado bajo en calcio y con varios aditivos orgánicos (vitaminas, adenina, agua de coco, carbón activado, reguladores de crecimiento, sacarosa y glucosa). La presencia de carbón activado redujo los efectos
negativos asociados a las sustancias fenólicas liberadas en el medio por las estacas. Se observaron tres tipos de respuesta: ausencia de crecimiento, crecimiento vegetativo y reproductivo. Las yemas vegetativas desarrollaron hojas y raíces, mientras que las florales formaron una inflorescencia compuesta por varios segmentos nodales. Estos se secionaron y subcultivaron en un medio fresco, en el cual iniciaron crecimiento vegetativo. Después de seis meses de cultivo, los explantes enraizados fueron exitosamente transferidos a condiciones de invernadero.

AGRADECIMIENTO

Los autores agradecen la donación del material vegetal utilizado en el presente experimento por parte de cultivadores aficionados.

LITERATURA CITADA

