# PROGENY TEST ANALYSIS AND POPULATION DIFFERENTIATION OF MESOAMERICAN MAHOGANY (Swietenia macrophylla)

Carlos Navarro<sup>1/\*</sup>, Gustavo Hernández<sup>\*</sup>

Palabras clave: *Swietenia macrophylla*, heredabilidad, fitomejoramiento, evaluación de progenies, poblaciones naturales.

Keywords: Swietenia macrophylla, heritability, tree improvement, progeny test, natural populations.

Recibido: 07/01/04

Aceptado: 29/09/04

#### ABSTRACT

The performance of open-pollinated single tree families of mahogany Swietenia macrophylla from populations in Mesoamerica was evaluated in 3 trials established in northern Costa Rica. The trials at Upala and Lagartera (Los Chiles) contain families of Costa Rican origin, while the Laberinto (Los Chiles) trial contains material from 6 Central American countries and Mexico. Data on root-collar diameter, total height, survival, and Hypsipyla grandella attack were collected. The analysis indicate significant family and population differences for height and diameter, but H. grandella attacks were uniform over all sites. Heritabilities at 1.7 years for Upala were 0.54±0.02, and 0.55±0.02 for diameter and height, respectively; after this measurement this trial was burned completely as a result of drought in El Niño year, so further measurements could not be made. Lagartera at 0.7 years presented heritabilities for diameter and height of 0.55±0.008 and 0.57±0.008. Laberinto presented heritabilities of 0.48±0.01 for diameter (2.9 years),  $0.6\pm0.01$  for height,  $0.1\pm0.002$  for H. grandella attack; 0.07±0.002 for number of shoots, and 0.18±0.003 for stem form 2.7 years

### RESUMEN

Análisis de experimentos de progenies (familias) de una colección Mesoamericana de caoba (Swietenia macrophylla). El desarrollo de progenies de árboles madre de polinización abierta de caoba, Swietenia macrophylla, fue evaluado en 3 ensayos establecidos en la Zona Norte de Costa Rica. Los de Upala y Lagartera (Los Chiles) incluyen familias originarias de Costa Rica, mientras que el de Laberinto (Los Chiles) presenta material de 6 países centroamericanos y México. Se recolectó información sobre diámetro a la base, altura total, sobrevivencia, y ataque de Hypsipyla grandella. Los análisis indican diferencias significativas a nivel de progenie y procedencias para diámetro y altura, pero el ataque de H. grandella fue uniforme en todos los sitios. Las heredabilidades a los 1,7 años para Upala fueron de 0,54±0,02 y 0,55±0,02 para diámetro y altura respectivamente. Después de esta medición el ensayo se quemó por completo, debido a sequías bajo el efecto de El Niño, razón por la cual no pudieron efectuarse mediciones posteriores. El ensayo en Lagartera, de 0,7 años, presentó heredabilidades para diámetro y altura de 0,55±0,008 y 0,57±0,008. En Laberinto, las heredabilidades obtenidas fueron de 0,48±0,01 para diámetro (2,9

Autor para correspondencia. Correo electrónico: cnavarro@catie.ac.cr

Tropical Agricultural Research and Higher Education Center (CATIE), Turrialba, Costa Rica.

after planting. Flooding in 1998 damaged the Lagartera trial, which was also severely attacked by *H. grandella*. This resulted in very low heritabilities, with large standard errors; therefore its genetic values in the first measurement are considered unreliable. The plantation recovered, and after 3 years genetic values were comparable with the other 2 trials. Isolated mother trees produced slow-growing families in most cases, in comparison with the clustered ones or those in natural dense forests, suggesting inbreeding mechanisms.

años),  $0.6 \pm 0.01$  para altura,  $0.1\pm 0.002$  para el ataque de H. grandella; 0,07±0,002 para número de ejes, y 0,18±0,003 para la forma a los 2,7 años de plantado. Las inundaciones en 1998 dañaron el ensavo de Lagartera, que además fue severamente atacado por H. grandella. Esto se manifestó en heredabilidades muy bajas con errores estándar altos, por lo tanto los valores genéticos en la primera medición se consideran poco confiables. La plantación se recuperó y después de 3 años los valores genéticos fueron comparables con los otros 2 ensayos. En general, los árboles madre que estaban solitarios, produjeron progenies de crecimiento lento, en comparación con las progenies de árboles madre que estaban en grupos o en bosque natural, lo que sugiere mecanismos de endogamia.

## **INTRODUCTION**

*Swietenia macrophylla* is an important tree species in the neotropics, it is found in the rainforests between latitudes of 22° North and 20° South of the Equator. Graham (1999) indicates that pollen from an ancestor of the Meliaceae family was present in the Pliocene and Miocene in Mexico, which led us to believe that the species was present there many years ago.

In Meliaceae, *Swietenia* is the most important genus for wood production followed by *Cedrela*. Beginning in the 19<sup>th</sup> century and until now, the mahoganies have been the pillar of the forest industry of Meso and South America. They cover the neotropical territory from Mexico to Brazil and Argentina, and the Caribbean Islands.

During the last decades, the *Swietenia* natural populations have been severely affected and reduced by several factors, mainly due to deforestation processes that diminish populations as well as selective logging that affects the genetic makeup of populations.

The Mexican and Central American populations have been heavily exploited

(Matamoros and Seal 1996), while current logging of natural populations for the international market occurs in Brazil and Bolivia.

These tree species present a low proportion of adult trees, which joined with a low natural regeneration rate, increase their rareness.

The extensive harvest of *S. macrophylla* for its valuable wood has resulted in high concern over its conservation status and sustainable use (Proposed Amendment to CITES Appendix II 1997), and a strong focus of current research on these topics (Negreros and Mize 1994, Gullison *et al.* 1996, Snook 2003, Navarro *et al.* 2003). The FAO is establishing a network to facilitate the genetic conservation of *S. macrophylla*, and other species of the Meliaceae family (Patiño 1997). *S. mahagoni* has already been heavily exploited, and both *S. mahagoni* and *S. humilis* were listed under Appendix II of CITES in 1992 (Patiño 1997).

In 1994, CATIE and ITE (Institute of Terrestrial Ecology) together with other institutions and the European Union support, made a collection of mahogany germplasm in seven Mesoamerican countries. With this material studies of genetic variation were done, gene banks and progeny trials in Costa Rica and Mexico were established. This work have been done considering the importance of using both molecular and quantitative markers for gene conservation and breeding.

This paper investigates three major aspects: (1) The genetic variation throughout Mesoamerican populations and families of *Swietenia macrophylla;* (2) The growth variation in families and populations of mahogany; (3) The influence of collecting isolated trees in their progeny performance.

The shootborer *Hypsipyla grandella* is a Lepidopteran that co-evolved with some Meliaceae species; it attacks preferentially; *Swietenia, Cedrela* and *Carapa*. Therefore, the adaptation of different *Swietenia* populations to the shootborer attack was also studied in these experiments.

## MATERIALS AND METHODS

### Collection

Field collection of leaves, herbarium material and seeds from natural *Swietenia* populations were carried on. The populations sampled covered a wide range of environments, population densities and degrees of exploitation.

Prior to collection, general information was sought on: (1) climatic data - including topography, geology, soil, vegetation, land use; and (2) socio-economic data - including population, agricultural surveys, economic indicators, and information on the infrastructure, roads and other means of transportation.

This information was used to:

- Define eco-geographically distinct areas in the distribution of the species for sampling;
- Estimate the likely extent of within-species variation, based on the heterogeneity in its natural distribution area;
- Assess the threat of genetic erosion; and
- Predict the best timing for collecting.

Information concerning the human and physical environment was also useful for field

orientation and for thorough documentation of the collecting mission.

Collections were made from 42 different mahogany populations, ranging from Mexico to Panama. The number of trees sampled within populations varied according to its size and accessibility. Populations in each country were located using the expertise of local collaborators and previous reconnaissance. The approximate extent of each population was gauged as objectively as possible.

Trees were sampled along a transect, the initial bearing was randomly selected. Mahogany trees were either solitary or clumped. When trees were clumped, collections were restricted to individual trees more than 100 m apart. To obtain maximum diversity and avoid seeds from related trees, only five individual trees per clump were collected. Up to a maximum of 50 trees were collected within each population along the transect. Only mature trees were selected. In some cases, populations were so sparse that only solitary trees could be collected.

Herbarium material was dried and mounted at CATIE's herbarium, and seeds were dried and stored at the CATIE seed bank.

Table 1 and figure 1 show the sites of collections in Central America and Mexico. This is the most extensive single-tree collection of mahogany that has been made in this area. The Institute of Tropical Forestry in Puerto Rico made an earlier provenance collection of *S. macrophylla* in 1964 and 1965. At that time, 14 provenances were collected in Mexico and Central America (Boone and Chudnoff 1970).

## **Field trials**

To observe variation in the quantitative genetic parameters, 3 of the 6 measurements (before and after the strong attack of *Hypsipyla grandella*) are presented in this article. Details about experimental design and dates of measurement are shown in table 2.

In the first measurement, root collar diameter, total height, and *H. grandella* attack were analyzed, while variables of stem form and attack response were added in the last one.

## AGRONOMÍA COSTARRICENSE

40

 Table 1.
 Populations of Swietenia macrophylla sampled in Central America and Mexico. Latitude and longitude are given in decimal degrees.

| Country    | Population                | Latitude (N) | Longitude (W) | Altitude (masl) | No. trees sampled |
|------------|---------------------------|--------------|---------------|-----------------|-------------------|
| Mexico     | Naranjal, Quintana Roo    | 19.36676     | 88.46131      | 50              | 15                |
|            | Nuevo Becal, Campeche     | 18.80756     | 89.32721      | 150             | 46                |
|            | San Felipe, Quintana Roo  | 18.74599     | 88.35480      | 50              | 20                |
|            | Escarcega, Campeche       | 18.60068     | 90.82924      | 50              | 9                 |
|            | Laguna Kana, Quintana Roo | 19.44662     | 88.44116      | 50              | 5                 |
|            | Madrazo, Quintana Roo     | 18.03352     | 89.24794      | 150             | 5                 |
| Belize     | Las Cuevas, Cayo          | 16.75180     | 89.00106      | 600             | 10                |
|            | San Pastor, Cayo          | 16.70621     | 88.97249      | 600             | 26                |
|            | New María, Cayo           | 16.82337     | 89.00043      | 600             | 13                |
|            | Grano de Oro, Cayo        | 16.71945     | 89.01754      | 600             | 25                |
|            | Río Bravo, Orange Walk    | 17.84534     | 89.03319      | 50              | 35                |
| Guatemala  | Bethel, Petén             | 16.48350     | 90.50282      | 120             | 32                |
|            | Tikal, Petén              | 17.22520     | 89.61216      | 250             | 56                |
|            | La Técnica, Petén         | 16.91341     | 90.91274      | 125             | 47                |
|            | Bio-Itza, Petén           | 16.85234     | 90.93113      | 20              | 2                 |
| Honduras   | Corrales, Colón           | 15.51259     | 85.94703      | 650             | 12                |
|            | Lancetilla, Atlántida     | 15.73991     | 85.45721      | 30              | 35                |
|            | Mangas, Colón             | 15.51259     | 85.94703      | 680             | 1                 |
|            | Comayagua, Comayagua      | 14.46010     | 87.68314      | 500             | 5                 |
|            | Otoro, Siguatepeque       | 14.52160     | 88.00089      | 600             | 3                 |
| Nicaragua  | Terciopelo, Sahsa         | 14.00675     | 83.93559      | 60              | 26                |
| 0          | Mukuwas, Bonanza          | 14.04645     | 84.49976      | 200             | 38                |
| Costa Rica | Marabamba, Los Chiles     | 10.94656     | 84.63752      | 45              | 67                |
|            | Caño Negro, Los Chiles    | 10.91774     | 84.42994      | 55              | 37                |
|            | Santa Cecilia. La Cruz    | 11.06101     | 85.27857      | 300             | 12                |
|            | Upala. Alajuela           | 10.53508     | 85.08336      | 50              | 13                |
|            | Pocosol, Liberia          | 10.53364     | 85.35957      | 270             | 37                |
|            | Playuelas, Los Chiles     | 10.92175     | 84.69872      | 35              | 4                 |
|            | San Emilio. Los Chiles    | 10.97147     | 84.77328      | 30              | 64                |
|            | Abangares, Guanacaste     | 10.06600     | 84,49641      | 50              | 6                 |
|            | Orotina. Alaiuela         | 9.55140      | 84.29620      | 250             | 1                 |
|            | Turrubares, Alajuela      | 9.51212      | 84.31335      | 350             | 1                 |
|            | Chapernal, Puntarenas     | 10.07469     | 84.82586      | 50              | 10                |
| Panama     | Ouintín. Darien           | 8.22469      | 78.08581      | 70              | 10                |
|            | Punta Alegre. Darien      | 8.26119      | 78.23616      | 10              | 5                 |
|            | Tonosí. Los Santos        | 7.44882      | 80.29070      | 100             | 15                |
|            | Gatín Gatín               | 9 26800      | 79 91958      | 20              | 4                 |
|            | Paraíso, Paraíso          | 9.03278      | 79.62656      | 50              | 1                 |
|            | Balboa Ancon              | 8 95500      | 79 95430      | 50              | 1                 |
|            | Summit Ancon              | 9.06489      | 79.64622      | 50              | 3                 |
|            | Calabacito Veraguas       | 8 24636      | 81.08095      | 50              | 1                 |
|            | Coiha Veraguas            | 7 50102      | 81 69603      | 10              | 1                 |
|            | Cerro Hoya                | 7.32321      | 80.59560      | 500             | 23                |
|            | Total                     |              |               |                 | 782               |



Fig. 1. Mesoamerican distribution of the populations planted in the trials of Swietenia macrophylla.

| Table 2. F | ield tr | ials c | lata. |
|------------|---------|--------|-------|
|------------|---------|--------|-------|

| Trial                    | Location<br>(GPS)         | Experimental design                                                                          | Planting date              | Date of<br>measurements in<br>days after planting | Spacing (m) |
|--------------------------|---------------------------|----------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------|-------------|
| Upala                    | 10.53409 N,<br>85.02287 W | 15 blocks, 31 families, 2 trees<br>per plot, in lines with<br><i>Calophyllum brasiliense</i> | 12 <sup>th</sup> June 1996 | 621                                               | 3 X 3       |
| Lagartera,               | 10.58853 N,               | 15 blocks with 31 families and                                                               | 19 <sup>th</sup> July 1996 | 585, 1658, 1812 <sup>*</sup>                      | 3 X 3       |
| Los Chiles               | 84.43002 W                | 3 trees per plot.                                                                            | -                          |                                                   |             |
| Laberinto,<br>Los Chiles | 10.94774 N,<br>84.70994 W | 15 blocks with 91 families and 2 trees per plot.                                             | 14 <sup>th</sup> June 1997 | 251, 979, 1054*, 1327                             | 3 X 3       |

\* only for diameter

The experiments were measured for total height (cm) from the ground to the terminal shoot, diameter was measured at the root collar and the attack of *H. grandella* was taken as a discrete variable indicating presence or absence of attack.

The trials were established at three sites in northern Costa Rica. Trials at Lagartera and Upala (Table 3) contain Costa Rican families. The trial at Laberinto, established 1 year later, contains populations from Central America and Mexico (Table 4). Laberinto has some populations in common with trials at Lagartera and Upala.

For the measurements taken during 2000 and 2001, only the trials at Laberinto and Lagartera were evaluated, and the new variables were evaluated as:

| Population     | N° mother trees (Family)               | Latitude (GPS) | Longitude (GPS) |
|----------------|----------------------------------------|----------------|-----------------|
| Caño Negro I   | 643, 644, 645, 646, 647, 648, 649, 650 | 10.94774       | 84.70994        |
| Caño Negro II  | 651                                    | 10.94705       | 84.72119        |
| Caño Negro III | 652                                    | 10.94646       | 84.72319        |
| Caño Negro IV  | 653                                    | 10.94774       | 84.70994        |
| Playuelas I    | 658                                    | 10.91815       | 84.69996        |
| Playuelas II   | 660                                    | 10.92770       | 84.68567        |
| Playuelas III  | 661                                    | 10.92635       | 84.68893        |
| Marabamba I    | 665*                                   | 10.95426       | 84.65771        |
| Marabamba II   | 668, 673, 674,6 76                     | 10.95426       | 84.65771        |
| Marabamba III  | 680, 681 682                           | 10.95403       | 84.65751        |
| Marabamba IV   | 683                                    | 10.97844       | 84.70361        |
| San Emilio I   | 684, 685, 686, 687,688, 689            | 10.97235       | 84.77287        |
| San Emilio II  | 690                                    | 10.95402       | 84.77411        |
| San Emilio III | 691                                    | 10.53615       | 84.47122        |
| San Emilio IV  | 692                                    | 10.58191       | 84.46671        |
| San Emilio V   | 693                                    | 10.95971       | 84.77346        |
|                |                                        |                |                 |

Table 3. Costa Rican families planted in trials at Lagartera (Los Chiles) and Upala.

\* Family 65 was planted only at Lagartera. Roman population numbers indicate different grouping of trees within the collection transect.

- Form: 1 = straight 2 = leaning 3 = crooked 4 = coppice 5 = stump
- Response to the attack:
- 1 =One shoot after the attack
- 2 = Two shoots (bifurcation) after the attack
- 3 = Three shoots after the attack
- 4 = Four or more shoots after the attack
- 5 = Bad stem form by other damages

For both measurements the variable isolation (solitary) of the mother tree was added, considering : 1. Isolated mother tree (no other trees of the same species) at a distance of less than 500 m; 2. Semi-isolated (other trees no closer than 100 m); and 3. Mother tree in clusters or associated with more than 2 trees in a radius of less than 100 m. This variable was analyzed with orthogonal contrasts, analysis of variance and Tukey means comparisons.

We examined a total of 92 families from 7 populations: Mexico, Guatemala, Belize, Honduras, Nicaragua, Costa Rica and Panama.

The 3 field trials are all in the life zone referred to by Holdridge (1967) as Tropical

Moist Forest with climatic association. This life zone is characterized by having a biotemperature between 24 and 25°C and around 2500 mm of annual rainfall with a dry period of approximately 3 months.

The Laberinto trial was established in northern of Costa Rica in soils classified by Perez *et al.* (1978), as belonging to the Typic Tropaquept family fine silty isohyperthermic. These gley and humic gley soils are found in drained alluvial valleys, and show little evolution and presence of organic accumulations on the surface. The topography is flat in all sites.

The Lagartera trial is found on fine clay isohyperthermic soils of the Aquic Distropept family. These soils, characteristic of old terraces with little evolution, tend to be slightly acid, and the high clay content may cause drainage problems.

The Upala trial is located on fine clay isohyperthermic, reddish soils of the Oxic Dystropept family. Such soils are deep, but low in bases and associated with poor drainage.

| Country    | Population      | Number of Family                                              | Latitude<br>GPS | Longitude<br>GPS | Precipitation<br>(mm) | Temperature<br>(°C) | Dry<br>months |
|------------|-----------------|---------------------------------------------------------------|-----------------|------------------|-----------------------|---------------------|---------------|
| MEXICO     | San Felipe      | 11, 15, 16, 116                                               | 18.74599        | 88.3548          | 1300                  | 25                  | 4             |
| MEXICO     | Nuevo Becal I   | 121, 122, 125, 126, 129                                       | 18.80756        | 89.32721         | 1200                  | 26                  | 4             |
| MEXICO     | Nuevo Becal II  | 156, 157, 159, 160                                            | 18.80756        | 89.32721         | 1200                  | 24                  | 4             |
| MEXICO     | Naranjal        | 132, 133, 136, 141                                            | 19.35549        | 88.46355         | 1200                  | 24                  | 4             |
| MEXICO     | Madrazo         | 152, 153, 155                                                 | 19.45218        | 88.44468         | 2000                  | 26                  | 4             |
| BELICE     | Las Cuevas I    | 22                                                            | 16.7518         | 89.00106         | 2900                  | 22                  | 3             |
| BELICE     | Las Cuevas II   | 257                                                           | 16.42754        | 88.58995         | 2900                  | 22                  | 3             |
| GUATEMALA  | Bethel          | 32, 326, 331, 343                                             | 16.4835         | 90.50282         | 1800                  | 25                  | 4             |
| GUATEMALA  | Bio-Itza        | 396                                                           | 16.85234        | 90.93113         | 1955                  | 28                  | 5             |
| GUATEMALA  | Tikal I         | 3101                                                          | 16.85009        | 90.9316          | 1955                  | 28                  | 5             |
| GUATEMALA  | Tikal II        | 3131, 3151, 3153                                              | 17.22520        | 89.61216         | 1955                  | 28                  | 5             |
| HONDURAS   | Lancetilla      | 427, 432, 434, 435, 436, 438,<br>440, 442, 443, 444, 445, 447 | 15.73991        | 85.45721         | 3278                  | 25                  | 3             |
| HONDURAS   | Comayagua I     | 453                                                           | 14.45397        | 87.6597          | 1619                  | 25                  | 5             |
| HONDURAS   | Comayagua II    | 454                                                           | 14.45398        | 87.65806         | 1619                  | 25                  | 5             |
| NICARAGUA  | Mukuwas         | 527, 528, 529, 531, 532, 533,                                 | 14.04645        | 84.49976         | 2750                  | 24                  | 4             |
|            |                 | 536, 541, 551, 556, 559, 560,<br>561, 562, 564,               |                 |                  |                       |                     |               |
| COSTA RICA | Caño Negro      | 644 *, 649 *                                                  | 10.97774        | 84.70994         | 2885                  | 24                  | 3             |
| COSTA RICA | Marabamba       | 682 *                                                         | 10.95403        | 84.65751         | 2885                  | 24                  | 3             |
| COSTA RICA | San Emilio I    | 687*                                                          | 10.97235        | 84.77287         | 2885                  | 24                  | 3             |
| COSTA RICA | San Emilio II   | 690*                                                          | 10.95402        | 84.77411         | 2885                  | 24                  | 3             |
| COSTA RICA | San Emilio III  | 693*                                                          | 10.95971        | 84.77346         | 2885                  | 24                  | 3             |
| COSTA RICA | Upala I         | 699                                                           | 10.54085        | 85.09293         | 2558                  | 25                  | 4             |
| COSTA RICA | Santa Cecilia   | 6109                                                          | 11.06101        | 85.27857         | 2585                  | 26                  | 4             |
| COSTA RICA | Abangares       | 6121                                                          | 10.05493        | 84.49443         | 1940                  | 27                  | 5             |
| COSTA RICA | Pocosol         | 6156                                                          | 10.89688        | 85.60125         | 1510                  | 26                  | 6             |
| COSTA RICA | Chapernal       | 6243, 6244, 6248, 6250, 6251                                  | 10.06589        | 84.53552         | 1940                  | 27                  | 5             |
| COSTA RICA | Upala II        | 6253                                                          | 10.84879        | 84.92218         | 2558                  | 25                  | 4             |
| PANAMÁ     | Quintin         | 73, 79, 710                                                   | 8.25682         | 78.26795         | 2500                  | 26                  | 4             |
| PANAMÁ     | Punta Alegre I  | 711                                                           | 8.04698         | 78.23505         | 2500                  | 26                  | 4             |
| PANAMÁ     | Punta Alegre II | 713                                                           | 8.26119         | 78.23616         | 2500                  | 26                  | 4             |
| PANAMÁ     | Tonosi          | 717, 719, 721, 724, 726                                       | 7.33517         | 80.48316         | 2500                  | 25                  | 4             |
| PANAMÁ     | Gatún           | 731, 732, 733                                                 | 9.268           | 79.91958         | 2500                  | 25                  | 4             |
| PANAMÁ     | Paraíso         | 735                                                           | 9.03278         | 79.62656         | 2500                  | 25                  | 4             |

9.03278

7.50102

79.62656

81.69603

Table 4. Families planted in trial at Laberinto, Los Chiles, Costa Rica.

\* Also planted in trials at Upala and Lagartera.

Coiba

## **Experimental design**

PANAMÁ

A randomized block design was applied in all trials. Two tree family plots were planted at 3x3 m with 2 guard rows around the whole trial. In Upala trees were interplanted in lines with Calophyllum brasiliense at a 3x3 m spacing. Only Lagartera have 3 trees per family

741

plots, details like number of families per block, families by site and blocks by site are described in table 2.

2500

3500

25

4

4

Preparation of the area involved plowing and raking the soil previous plantation. The plots were maintained with machete use and the herbicide Roundup (glyphosate).

The models used for the statistical analysis were:

• Random analysis of variance on individual trees

 $Y_{ijk} = \mu + B_i + P_j + BP_{ij} + \varepsilon_{jkl}$ 

 $Y_{ijk}$  is the phenotypic value of the *k*th tree of the *j*th family in the *i*th block;

 $\mu$  = population mean;

 $P_i$  = effect of the *j*th family;

 $B_i = effect of ith block$ 

BP<sub>ij</sub> is the interaction of *i*th block with the family *j*. Blocks and families are considered as random effects.

Thus, one may expect different family structures of the seeds from open-pollinated collections, sometimes self-pollinated due to isolation. Therefore, families of single mothertrees may be half-sibs, full-sibs or selfings.

The procedure (proc) in SAS for evaluating the last 2 measurements was:

### proc glm;

class evaluation block population family; model diameter height attack respatack form = eval block population family(population) population\*block eval\*population\*family family\*eval(population); means population; means population/Tukey lines; where eval is evaluation number and respattack is response to *H. grandella* attack.

The proc for the evaluation of the mother tree isolation for both the statement Contrast of GLM and Tukey means comparison was the following:

proc glm; class block mothertree; model diameter height attack shoots form =block mothertree; means mothertree/Tukey lines; contrast '1 vs 2y3' mothertree 2 -1 -1; contrast '2 vs 3' mothertree 0 -1 -1;

The following parameters for growth in height and diameter were estimated based on individual mother trees: the additive genetic variance  $\sigma_A^2 = 4 \sigma_E^2$  where  $\sigma_F^2$  is the variance component due to open-pollinated families; the narrow-sense heritability on an individual tree basis  $h^2 = \sigma_A^2 / (\sigma_F^2 + \sigma_{BXF}^2 + \sigma_E^2)$ , where  $\sigma_E^2$  is the residual variance. The standard errors for heritability were calculated following the formula by Dieters *et al.* (1995). The additive genetic coefficient of variation AGCV=100 ( $\sigma_A/x$ ), where x is the population mean.

Coefficient of population differentiation was calculated according to Kremer *et al.* (1997).

## **RESULTS AND DISCUSSION**

Highly significant differences between families and populations for the variables height and diameter were found in the Laberinto trial (P<0.0001), (Tables 5 and 6). Differentiation of the populations is shown in the cluster of figure 2, a clear bifurcation between populations of

|                   |    |          | rop      | (Pop)    | ВюскРор  | Error   | Among<br>pops | pops  | Qst    |
|-------------------|----|----------|----------|----------|----------|---------|---------------|-------|--------|
| Diameter 1        | VC | 7.636    | 2.245    | 3.756    | 1.402    | 36.376  | 37.41         | 62.58 | 0.0695 |
|                   | р  | <.0001   | <.0001   | <.0001   | <.0001   |         |               |       |        |
| Diameter 3        | VC | 27.134   | 24.623   | 7.446    | 12.1144  | 222.282 | 76.78         | 23.21 | 0.2924 |
|                   | р  | <.0001   | <.0001   | 0.0062   | 0.0036   |         |               |       |        |
| Diameter 4        | VC | 22.985   | 42.898   | 5.523    | 6.177    | 221.83  | 88.59         | 11.40 | 0.4926 |
|                   | р  | <.0001   | <.0001   | 0.0219   | 0.0329   |         |               |       |        |
| Height 1          | VC | 177.85   | 21.751   | 143.882  | 7.53     | 975.659 | 13.13         | 86.86 | 0.0185 |
|                   | р  | <.0001   | <.0001   | <.0001   | 0.0439   |         |               |       |        |
| Height 2          | VC | 581.821  | 741.867  | 208.146  | 358.877  | 4773.9  | 78.09         | 21.90 | 0.3082 |
|                   | р  | <.0001   | <.0001   | 0.0002   | < 0.0001 |         |               |       |        |
| Height 4          | VC | 1231.8   | 3166.1   | 321.182  | 686.423  | 9888.4  | 90.78         | 9.21  | 0.5520 |
|                   | р  | <.0001   | <.0001   | 0.0121   | 0.001    |         |               |       |        |
| H.g. resistance 1 | VC | 0.000187 | 0        | 5.48E-06 | 0.000371 | 0.0124  | 0             | 100   | 0      |
|                   | р  | <.0001   | 0.0711   | 0.6866   | 0.0001   |         |               |       |        |
| H.g. resistance 4 | VC | 0.000203 | 7.33E-05 | 0.000236 | 0.000323 | 0.0094  | 23.70         | 76.29 | 0.0373 |
|                   | р  | <.0001   | <.0001   | 0.0124   | 0.0008   |         |               |       |        |
| Stem form 2       | VC | 0.007691 | 0.00314  | 0        | 0.0018   | 0.287   | 100           | 0     | 1      |
|                   | р  | 0.0021   | 0.1529   | 0.2995   | 0.1033   |         |               |       |        |
| Stem form 4       | VC | 0.0279   | 0.04112  | 0.01147  | 0.05461  | 0.6193  | 78.18         | 21.81 | 0.3094 |
|                   | р  | <.0001   | <.0001   | 0.0065   | <.0001   |         |               |       |        |
| # shoots 2        | VC | 0.02278  | 0.01472  | 0.04602  | 0.02019  | 0.6895  | 24.23         | 75.76 | 0.0384 |
|                   | р  | 0.0131   | <.0001   | <.0001   | 0.0683   |         |               |       |        |
| # shoots 4        | VC | 0.0686   | 0        | 0.0145   | 0.0026   | 0.642   | 0             | 100   | 0      |
|                   | р  | <.0001   | 0.302    | 0.0326   | 0.076    |         |               |       |        |

Table 5. Variance components and significancies at Laberinto trial (Los Chiles, Costa Rica).

Table 6. Results of ANOVA, expected mean squares and genetic parameters for families of S. macrophylla, at Laberinto, Costa Rica.

|                                                 | Mean<br>(CV %) | Genetic parameters            | Mean<br>(CV %) | Genetic parameters  | Mean<br>(CV %) | Genetic parameters         |
|-------------------------------------------------|----------------|-------------------------------|----------------|---------------------|----------------|----------------------------|
|                                                 | 1998           | 1998                          | 2000           | 2000                | 2001           | 2001                       |
| Diameter                                        | 19.8 (28)      | h <sup>2</sup> =0.55, AGCV=13 | 63 (24)        | $h^2=0.35\pm 0.01$  | 71 (22)        | h <sup>2</sup> =0.48±0.01  |
| Height                                          | 97.5 (30)      | h <sup>2</sup> =0.57, AGCV=14 | 267 (26)       | $h^2=0.41\pm 0.007$ | 328 (31)       | h <sup>2</sup> =0.6±0.01   |
| Attack                                          | 0.015 (720)    | h <sup>2</sup> =0.02          | 1 (0)          | NC                  | 0.98 (9)       | h <sup>2</sup> =0.1±0.002  |
| # Shoots after<br>attack of <i>H. grandella</i> |                |                               | 2.18 (38)      | $h^2=0.27\pm 0.004$ | 2.5 (31)       | h <sup>2</sup> =0.07±0.002 |
| Stem Form                                       |                |                               | 1.12 (47)      | $h^2=0.04\pm 0.001$ | 1.4 (57)       | h <sup>2</sup> =0.18±0.003 |

Costa Rica and Panama and the rest of Mesoamerica shows the genetic structuring of the species, these results are comparable with the ones obtained using molecular markers by Gillies *et al.* (1999). The attack by *H. grandella* showed no significant differences among families in the Laberinto trial. In table 5 variance

components indicate differences among and within populations. At 251 days measurement variation within populations was greater than variation among populations, but for measurements at 979, 1054 and 1327 days, that condition changed, showing more variation among populations than within populations.



Fig. 2. Cluster for *Swietenia macrophylla* populations in Mesoamerica. Laberinto site (Los Chiles, Costa Rica) at 3.65 years.

Variation between different years of measurement was found for the coefficient of population differentiation (Qst) at 251 days and the other measurements. Also maternal effects possibly are affecting Qst values for the measurement at 251 days, where there is no differentiation for populations. From the results and comparison of means, it can be seen that populations show a variation between the best and the lowest population of approximately 30% and 21%, in diameter and height, respectively. At the family level, the variation for diameter was 125% between the highest and lowest family, while for height, the variation was 130%. The fact that there is more variation within than

among populations has very important implications for gene conservation and breeding, as it suggests that local breeding activities would have high possibilities of securing substantial genetic gains.

Table 6 shows the heritabilities obtained for diameter and height at the Laberinto trial (0.55 and 0.57, respectively), and the additive genetic coefficient of variation (AGCV) with 13% for diameter and 14% for height. Pruning was applied to the experiment immediately after the measurement for the year 2000. Our heritability estimates are high in comparison with the ones shown by Cornelius (1994), who obtained mean heritabilities of 0.28 for height and 0.23 for diameter in a total of 67 studies, mainly with pines. For AGCV, Cornelius (1994) obtained a range of 5 to 15%; therefore, the present study suggests high levels of additive genetic variation for height and diameter.

The heritability in the production of shoots after attack by *H. grandella* is larger in year 2000, mainly because before that year trials were maintained without sanitary pruning. After the measurement of the year 2000, trees attacked by *H. grandella* were pruned, reducing the number of shoots.

In the measurement at 251 days at Laberinto, families 721 and 444 from Panama and Honduras, respectively, presented the best diameter increment (27 mm). Families 444 and 564 (Nicaragua) excelled in height (130 cm); these results were obtained using the measurements at 118 days as co-variables to eliminate the nursery or maternal effects in the ANOVA shown in table 7.

The best (721) and the worst (528) families differed by 127% in collar diameter. For height, the range from best (444) to worst (726) was 131%.

The Gatun (Panamá), Comayagua (Honduras) and Coiba (Panamá) populations showed the lowest performance, being inferior by 30% in diameter and 52% in height, compared to the best performers Bio-Itza and Santa Cecilia. It can be observed that variation among populations were lower than among families within locations. The trees from Bio-Itza

| he seeds were introduced in the model. |       |        |             |  |  |  |  |  |  |
|----------------------------------------|-------|--------|-------------|--|--|--|--|--|--|
| Mean Square                            | F     | P >F   | Mean (CV %) |  |  |  |  |  |  |
| 302.29                                 | 12.35 | 0.0001 | 20.0 (21.3) |  |  |  |  |  |  |

2.62

Covariance analysis for families of S. Table 7. đ height at 118 days after the sowing of t

64.109

| B * P             | 1229              | 24.469       | 1.35      | 0.0001    |
|-------------------|-------------------|--------------|-----------|-----------|
| D 118             | 1                 | 16853.27     | 688.7     | 0.0001    |
| Error             | 1214              | 18.1885      |           |           |
| height/Blocks (B) | 14                | 7502.00      | 12.70     | 0.0001    |
| Families          | 91                | 1420.362     | 2.40      | 0.0001    |
| BxP               | 1229              | 590.7621     | 1.29      | 0.0001    |
| Alt 118           | 1                 | 453304.9     | 767.3     | 0.0001    |
| Error (E)         | 1214              | 456.599      |           |           |
|                   |                   |              |           |           |
| (Customala) Tikal | (Customala) Santa | Casilia mora | than 1000 | aunariari |

(Guatemala), Tikal (Guatemala), Santa Cecilia (Costa Rica), Marabamba (Costa Rica) and Naranjal (México) came from natural stands composed by large populations; this is reflected in the superior performance of their families (381 cm of height and 77 mm of diameter in average for the five populations at 3.6 years).

Degrees of freedom

14

91

Trait/Effect

Families (P)

Diameter/Blocks (B)

Table 8 shows the analysis of variance for the family trial in Upala. As in the other trials, significant differences were found (P>0.0001) in diameter and height but not for the variable Hypsipyla attack. The growth of mahogany is overwhelming in this location (growth can be considered fast when root collar diameter increases by 2 cm per year and height more than 1 m per year). Mahogany registered

more than 100% superiority in height increment to Calophyllum brasiliense. This reflects the different ecological behavior of the two species, mahogany being a light tolerant pioneer while Calophyllum is a shade tolerant climax species.

0.0001

The individual narrow sense heritability estimates, for diameter and height, were 0.54 and 0.55, respectively in Upala trial.

The family with the best growth was No. 93 from San Emilio (see Table 3 for details), an important area of natural forest in northern Costa Rica. This family was superior by 45% to family 76 from Marabamba. Family 93 was 50% superior in diameter and height, compared to family 45 of Caño Negro (Costa Rica). These data show that

Expected square means and genetic parameters for the trial of Swietenia macrophylla in Upala, Costa Rica at Table 8. 621 days.

| Trait    | Effect       | Mean square | P >F   | Variance component | Mean<br>(CV %) | Genetic parameters            |
|----------|--------------|-------------|--------|--------------------|----------------|-------------------------------|
| Upala    | Blocks (B)   | 1176.3      | 0.0001 | 20.85              | 55(14.6)       | h <sup>2</sup> =0.54 AGCV=7.4 |
| Diameter | Families (P) | 529.2       | 0.0001 | 17.45              |                | AGCV=8                        |
|          |              | 138.34      | 0.0001 | 40.15              |                |                               |
|          |              | 65.53       |        | 66.38              |                |                               |
| Upala    | Blocks (B)   | 29752.5     | 0.0001 | 567.68             | 246            | h <sup>2</sup> =0.55 AGCV=7.8 |
| Height   | Families(P)  | 12056       | 0.0001 | 373.39             | (15)           | AGCV=8                        |
|          | BxP          | 2987.3      | 0.0001 | 850.82             |                |                               |
|          | Error (E)    | 1466        |        | 1466.88            |                |                               |
| Upala    | Blocks       | 0.61935     | 0.0001 | 0.008              | 0.8            | h <sup>2</sup> =0.065         |
| Attack   | Families     | 0.214551    | 0.0002 | 0.002              | (36)           |                               |
|          | BxP          | 0.149037    | 0.0001 | 0.027              |                |                               |
|          | Error        | 0.094623    |        | 0.094              |                |                               |

98.5 (21.7)

local material of northern Costa Rica contain enough variation for an improvement program.

Table 9 shows the results of the Lagartera trial where flooding affected some blocks in the test. The effect of families was not significant for diameter but significant for the variables height and *Hypsipyla* attack (P>0.01).

Lagartera at 1812 days (4.6 years) had a diameter average of 68 mm and a coefficient of variation (CV) of 21%. Diameter differences were significant to Pr > F = 0.0017.

The family 50 had the best diameter (78.8 mm), and the lowest performance was for family 68 with a diameter of 49.2 mm. The variable height registered an average of 306 cm, while the CV was 31% (Pr > F =0.0262). Again, the best family was the 50 with 306.8 cm and the lowest family the 68 with 188.8 cm, at 4.5 years. Pruning was applied 1 year before the 2001 measurement.

Analysis of variance is presented in tables 10 and 11. Results show that solitary (isolated) mother trees presented lower progeny performance in height and diameter (Pr > F < 0.0001 and form Pr > F < 0.0037).

The presence of attack was not significant in the performance of the family for the solitary analysis; nor was the response to the attack (Pr > F = 0.3440). It is interesting to note that there appears to be differences due to the population structures. Thus, mother trees that grow together in clumps generally show superior families when compared to the families from mothers that grow as solitaries.

Table 10 presents the analysis of variance, table 11 the orthogonal contrast analysis, and the test of Tukey for the means. We interpret this fact as a possible indication of an increase in selfing in case of solitaries. Karkkainen *et al.* (1996) and Koski and Muona (1986) in studies with *Pinus sylvestris* have showed the same possible effect of inbreeding. Future tree improvement programs must consider the risk of inbreeding depression when collecting seed from single trees growing far apart. The mating system, including estimates of selfing, should be undertaken using relevant genes markers.

We suggest that family differences reflect 3 sources of variation: 1) among populations; 2) among families within populations due to additive genetic variability; and 3) among families due to inbreeding depression.

These differences clearly reflect adaptations to different environments such as the latitude spans from 7.5 degrees to 19.45 degrees, precipitation from 1200 to 3500 mm year<sup>-1</sup> and the length of the dry season from 3-6 months per year.

The variation in the Fst values in the measurement at young stages may be caused by maternal effects; the same applies for the components of variance within and between populations. Also, for the first measurement, all trees had the same soil condition in the plastic pot, so the adaptive characters given to different microenvironments were minimized. The other measurements were done in the field where the seedlings were submitted to the edaphic and climatic conditions in the northern zone of the country.

|          | Mean<br>(CV %) | Genetic parameters         | Significance | Mean<br>(CV %) | Genetic parameters        | Significance |
|----------|----------------|----------------------------|--------------|----------------|---------------------------|--------------|
|          | 1998           | 1998                       |              | 2001           | 2001                      |              |
| Diameter | 47             | h <sup>2</sup> =0.19±0.009 | 0.0011       | 68             | h <sup>2</sup> =0.46±0.03 | <.0001       |
|          | (24)           | AGCV=11                    |              | (21)           |                           |              |
| Height   | 182            | $h^2=0.24\pm 0.01$         | 0.0001       | 306            | h <sup>2</sup> =0.35±0.02 | <.0001       |
| -        | (27)           | AGCV=14                    |              | (31)           |                           |              |
| Attack   | 0.68           | $h^2=0.14\pm 0.001$        | 0.0011       | 0.2            | h <sup>2</sup> =0.13±0.01 | 0.0111       |
|          | (65)           | AGCV=26                    |              | (475)          |                           |              |

 Table 9.
 Results of ANOVA, expected square means and genetic parameters for the trial *Swietenia macrophylla* La Lagartera, Costa Rica at 585(1998) and 4.54 (for height) and 4.96 (for diameter) years after planting.

| Source      | DF   | Type III SS | Mean Square | F Value | $\Pr > F$ |
|-------------|------|-------------|-------------|---------|-----------|
| Diameter    |      |             |             |         |           |
| Block       | 14   | 76411.11960 | 5457.93711  | 19.48   | <.0001    |
| Mother tree | 2    | 26488.79272 | 13244.39636 | 47.26   | <.0001    |
| Error       | 3386 | 948820.150  | 280.219     |         |           |
| Height      |      |             |             |         |           |
| Block       | 14   | 2772736.400 | 198052.600  | 20.11   | <.0001    |
| Mother tree | 2    | 1312080.358 | 656040.179  | 66.60   | <.0001    |
| Error       | 3392 | 33410485.04 | 9849.79     |         |           |
| Attack      |      |             |             |         |           |
| Block       | 14   | 0.17365414  | 0.01240387  | 2.52    | 0.0014    |
| Mother tree | 2    | 0.04247855  | 0.02123927  | 4.31    | 0.0134    |
| Error       | 3392 | 16.69869642 | 0.00492296  |         |           |
| Form        |      |             |             |         |           |
| Block       | 14   | 45.39012108 | 3.24215151  | 6.28    | <.0001    |
| Mother tree | 2    | 5.78438930  | 2.89219465  | 5.61    | 0.0037    |
| Error       | 3392 | 1750.014126 | 0.515924    |         |           |
| # of shoots |      |             |             |         |           |
| Block       | 14   | 134.3258932 | 9.5947067   | 12.93   | <.0001    |
| Mother tree | 2    | 2.2876912   | 1.1438456   | 1.54    | 0.2142    |
| Error       | 3393 | 2517.478661 | 0.741962    |         |           |

Table 10. Analysis of variance for the variable solitary mother tree at 3.6 years. Laberinto trial. Los Chiles. Costa Rica.

Table 11. Orthogonal contrasts for the variable solitary mother tree and Tukey grouping for the analysis of the variable solitary mother tree. Laberinto trial. Costa Rica.

| Contrast Analysis | Mean Square | F Value | Pr > F | Tukey       | Groups Mean (cm) | Mother tree* |
|-------------------|-------------|---------|--------|-------------|------------------|--------------|
| Diameter          |             |         |        | Diameter    |                  |              |
| Contrast          |             |         |        | А           | 70.7063          | 2            |
| 1 vs 2 y 3        | 24276.68368 | 86.63   | <.0001 | А           | 68.9839          | 3            |
| 2 vs 3            | 831.70919   | 2.97    | 0.0850 | В           | 63.7809          | 1            |
| Height            |             |         |        | Height      |                  |              |
| 1 vs 2 y 3        | 1123677.466 | 114.08  | <.0001 | A           | 317.624          | 2            |
| 2 vs 3            | 9069.200    | 0.92    | 0.3373 | А           | 312.806          | 3            |
|                   |             |         |        | В           | 274.469          | 1            |
| Attack            |             |         |        | Ataque      |                  |              |
| 1 vs 2 y 3        | 0.02972101  | 6.04    | 0.0141 | A           | 0.998144         | 3            |
| 2 vs 3            | 0.00049464  | 0.10    | 0.7513 | А           | 0.997354         | 2            |
|                   |             |         |        | А           | 0.990813         | 1            |
| # of shoots       |             |         |        | # of shoots |                  |              |
| 1 vs 2 y 3        | 0.87230015  | 1.18    | 0.2783 | А           | 2.37359          | 1            |
| 2 vs 3            | 0.40331726  | 0.54    | 0.4610 | А           | 2.35450          | 2            |
|                   |             |         |        | А           | 2.31374          | 3            |
| Form              |             |         |        | Form        |                  |              |
| 1 vs 2 y 3        | 3.92386213  | 7.61    | 0.0059 | А           | 1.31802          | 1            |
| 2 vs 3            | 0.09892198  | 0.19    | 0.6615 | ВА          | 1.24339          | 2            |
|                   |             |         |        | В           | 1.23082          | 3            |

\* 1. Isolated mother tree (no other trees of the same species) at a distance of less than 500 m, 2. Semi-isolated (other trees no closer than 100 m) and 3. Mother tree in clusters or associated with more than 2 trees in a radius of less than 100 m.

Gillies et al. (1999) in a Mesoamerican study of mahogany using RAPD, found a significant portion of diversity maintained between populations within the three geographical regions in Mesoamerica (i.e. Yucatán Península, Central Zone and Panama); the present results also show that there is differentiation in clusters of Panama in comparison with the other populations in the northern part of Mesoamerica (Figure 2). The percentage of genetic variation among populations was 12%, Fst 0.0168, while on average for 12 values of different characters and measurements of Fst values was 0.2. These differences show the influence of the selection in Swietenia macrophylla because of great climatic and edaphic differences within the entire collection.

The criteria used to cut the adult trees in the natural forest are: a minimum of diameter; height; good form; and the condition of trees without a hollow trunk. In the analysis we ascertained that the trees in exploited areas have less performance in height, diameter and form, and that hollow trunks is a variable that can not be analyzed in young trees. Gillies et al. (1999) found that the genetic diversity in mahogany was correlated to the level of exploitation or destruction of the forest; these results can be related with those presented in this paper, given that the solitary trees presented a low performance in diameter and height. This could indicate that the dysgenic selection produced by the human exploitation of the best trees, could have reduced the variation that corresponds to that part of the populations, including the best model trees, and therefore decreasing the overall genetic diversity.

Progeny experiments made with both Costa Rican families (at Upala and Lagartera), and the Central American and Mexican trial (at Laberinto), reveal high levels of genetic variation for height and diameter growth on 2 levels, population and family. For diameter, the best populations were Bio-Itza (Guatemala) and Tikal (Guatemala) and for height, Santa Cecilia (Costa Rica) and Naranjal (México).

For the Upala trial, it was found that families 93 from San Emilio (Los Chiles, Costa

Rica) and 51 from Caño Negro (Los Chiles, Costa Rica) produced the best growth in height and diameter.

As for resistance to *H. grandella*, no significant variation was found in the presence of the shootborer in any of the 3 trials. These results indicate that breeding for insect resistance in the present material is probably worthless. We believe, the best strategy to avoid insect damage is integrated pest management through the use of mixed stands, and agroforestry including important crop plants.

The heritability estimates were relatively high for diameter and height, which suggest the possibility of good genetic gains and indicate that there is additive genetic variability available for successful breeding.

The collection of seeds from individual trees to grow families has given us a reason to suggest further careful studies on population structures and especially on risks of inbreeding in sparse populations that may be the result of longterm forest exploitation. We recommend combining quantitative studies with molecular markers, including mating systems, in order to save valuable genetic resources. Only after such information it will be possible to plan optimal tree breeding programs for mahogany.

## ACKNOWLEDGEMENTS

To the European Union, contract TS3\*-CT94-0316 and of the IC18-CT97-0149 for its support. M. Hernández, J. Cornelius, L. Coto, J. Perez, K. Wightman and J. Haggar, all from CATIE, J. Wilson and A. Gillies from the Center for Ecology and Hydrology (Scotland) and the landowners R. Nuñez, J. E. Rodríguez and H. Abarca are gratefully acknowledged. In Central America we thanks to Centro Maya, Parque Nacional Tikal, ESNACIFOR, Centro de Mejoramiento Genético and Semillas Forestales, INRENARE, Proyecto CATIE-CONAP, Forest Dept. of Belize, Las Cuevas Experimental Station, and in Mexico to ICRAF and INIFAP for their cooperation. To Professor Peter Tigerstedt for his valuable comments and suggestions for this paper.

### LITERATURE CITED

- BOONE R.S., CHUDNOFF M. 1970. Variations in wood density of the mahoganies of Mexico and Central America. Turrialba 20 (3):369-371.
- CITES. 1997. Proposed amendment to CITES Appendix II. Convention on international trade in endangered species of wild fauna and flora. 10<sup>th</sup> Meeting of the Conference of the Parties, Harare, Zimbabwe, 9-20 June 1997. 36 p.
- CORNELIUS J.P. 1994. Heritabilities and additive genetic coefficients of variation in forest trees. Can. J. For. Res. 24(2):372-379.
- DIETERS M.J., WHITE T.L., LITTELL R.C., HODGE G.R. 1995. Application of approximate variances of variances components and their ratios in genetic tests. Theor. Appl. Gen. 91:15-24.
- GILLIES A., NAVARRO C., LOWE A.J, NEWTON A.C., HERNANDEZ M., WILSON J., CORNELIUS J.P. 1999. Genetic diversity in Mesoamerican populations of mahogany (*Swietenia macrophylla*), assessed using RAPDs. Heredity 83 (1999): 722-732.
- GRAHAM A. 1999. Studies in Neotropical Paleobotany. XIII. An Oligo-Miocene Palynoflora from Simojovel (Chiapas, Mexico). American Journal of Botany 86(1): 17-31.
- GULLISON R. E., PANFIL S.N., STROUSE J.J., HUBBELL S.P. 1996. Ecology and management of mahogany (*Swietenia macrophylla* King) in the Chimanes Forest, Beni, Bolivia. Botanical Journal of the Linnean Society 122:9-34.
- HOLDRIDGE L.R. 1967. Life zone ecology. San Jose, Costa Rica. Tropical Science Center. 206 p.
- KARKKAINEN K., KOSKI V., SAVOLAINEN O. 1996. Geographical variation in the inbreeding depression of Scots Pine. Evolution 50(1): 111-119.
- KOSKI V., MUONA O. 1986. Probability of inbreeding in relation to clonal differences in male flowering and

embryonic lethals. pp.391-400. *In:* IUFRO. Conference Proceedings Breeding Theory. Oct. 13-17. 1986. Williamsburg, Virginia.

- KREMER A., ZANETTO A., DUCOUSSO A. 1997. Multilocus and multitrait measures of differentiation for gene markers and phenotypic traits. Genetics 145: 1229-1241.
- MATAMOROS Y., SEAL U.S. (eds.). 1996. Report of threatened plants of Costa Rica Workshop, 4-6 October. IUCN/SSC Conservation Breeding Specialist Group: Apple Valley MN.
- NAVARRO C., WILSON J., GILLIES A., HERNÁNDEZ M. 2003. A new Mesoamerican collection of big-leaf Mahogany, pp 103-117. *In:* A.E. Lugo, J.C. Figueroa and M. Alayón (eds.). Big leaf mahogany: Genetics, ecology and management. Ecological Studies 159, Springer. New York.
- NEGREROS C., MIZE C. 1994. El efecto de la abertura del dosel y eliminación del sotobosque sobre la regeneración natural de una selva de Quintana Roo. pp. 107-126 *In:* Snook, L. & A. Barrera de Jorgenson (eds.). Madera, Chicle, Caza y Milpa: Contribuciones al manejo integral de las selvas de Quintana Roo. INIFAP/PROAFT/AID/WWF-US, Mérida, México.
- PATIÑO F. 1997. Genetic resources of Swietenia and Cedrela in the neotropics: Proposals for coordinated action. 1997. Based on contractual work for FAO by P.Y. Kageyama, C.Linares, C. Navarro and F. Patiño. Forest Resources Division, Forestry Department, FAO, Rome.
- PÉREZ S., ALVARADO A., RAMÍREZ C. 1978. Mapa asociación de subgrupo de suelos de Costa Rica. San José, Costa Rica, Instituto Geográfico Nacional. Esc. 1: 200.000.
- SNOOK L.K. 2003. Natural regeneration and growth of Mahogany (Swietenia macrophylla) in Mexico's Yucatan forests: Implications for sustainable silviculture, pp.169-192. In: A.E. Lugo, J.C. Figueroa and M. Alayón (eds.). Big leaf Mahogany: Genetics, ecology and management. Ecological Studies 159, Springer. New York.