CARACTERIZACIÓN MORFOLÓGICA DE 12 GENOTIPOS DE CHILE DULCE (*Capsicum annuum* L.) CULTIVADOS BAJO INVERNADERO EN COSTA RICA*

Esteban Elizondo Cabalceta
estebanec5@gmail.com
Ingeniero Agrónomo
Eladio Monge Pérez
melonescr@yahoo.com.mx
Universidad de Costa Rica

Introducción

En Costa Rica, el mercado nacional de chile dulce requiere mayoritariamente de frutos de punta alargada y de un peso entre 150 y 350 g, de color rojo. Sin embargo, existen otras variedades con posibilidades de competir en cuanto a características agronómicas y de rendimiento, tanto en producción a campo abierto como bajo invernadero.

Tradicionalmente, los caracteres morfológicos se han utilizado tanto para describir como para distinguir entre variedades vegetales. Actualmente, en chile dulce se utilizan los descriptores de *Capsicum* definidos por el Instituto Internacional de Recursos Fitogenéticos (IPGRI, por sus siglas en inglés), y con base en estos se han descrito diferentes tipos y variedades de chile dulce alrededor del mundo.

Una de las mayores preocupaciones de los fitomejoradores de chile dulce, es conocer y determinar las características cuantitativas asociadas directamente con el rendimiento del cultivo. El incremento del rendimiento se

El objetivo de este trabajo fue caracterizar, mediante descriptores morfológicos, 12 genotipos de chile dulce (*Capsicum annuum* L.) con frutos de forma cónica, cultivados bajo condiciones de invernadero en Alajuela, Costa Rica.

Materiales y métodos

La investigación se realizó de julio de 2010 a abril de 2011 en la Estación Experimental Agrícola Fabio Baudrit Moreno (EEAFBM) de la Universidad de Costa Rica, situada a 10° 1' latitud Norte y 84° 16' longitud Oeste, en el distrito San José del cantón Central de la provincia de Alajuela, a una altitud de 883 msnm, con un promedio de precipitación anual de 1940 mm distribuidos de mayo a noviembre, y un promedio anual de temperatura de 22°C.

El ensayo se llevó a cabo en un invernadero modelo XR de la marca Richel (Francia), tipo multicapilla, con techo de plástico, y con ventilación cenital automática; el mismo posee un sistema de riego equipado por medio de un tanque de 2640 litros, una

^{*} Este trabajo forma parte de la tesis de licenciatura en Ingeniería Agronómica del primer autor. Universidad Nacional, Heredia, Costa Rica.

puede llevar a cabo seleccionando plantas de acuerdo con características como número de frutos por planta, altura y número de ramas principales, las cuales junto con el diámetro y longitud del fruto, presentan alta variabilidad.

bomba AOSmith de 2,0 hp con una cámara hidroneumática y un temporizador electrónico ("timer").

Se evaluó un total de 12 genotipos híbridos de chile dulce (cuadro 1). El almácigo se sembró el 7 de julio de 2010 y el trasplante se realizó el 19 de agosto del 2010, 43 días después de la siembra. Las plántulas se establecieron en 168 sacos de un metro de largo, 22 cm de ancho y 22 cm de altura, rellenos con sustrato inerte de fibra de coco molida. Se establecieron 12 hileras de 14 sacos cada una, con una longitud de 14 m cada hilera. La distancia entre hileras fue de 1,54 m, y la distancia entre plantas fue de 0,25 m, para una densidad de siembra de 25974 plantas/ha. El cultivo se manejó mediante poda española, que consistió en dejar las plantas a libre crecimiento.

Cuadro 1. Genotipos de chile dulce utilizados en la investigación.

GENOTIPO	PROVEEDOR	
Cortés	DAC	
FBM-1	Universidad de Costa Rica	
FBM-2	Universidad de Costa Rica	
FBM-3	Universidad de Costa Rica	
FBM-7	Universidad de Costa Rica	
FBM-11	Universidad de Costa Rica	
FBM-12	Universidad de Costa Rica	
Jumbo	Villaplants	
Lamuyo Amarillo	Villaplants	
Lamuyo Experimental	Villaplants	
Tiquicia	Villaplants	
V-701	Seracsa	

Se utilizó un sistema de riego por goteo para proporcionar a las plantas el suministro de agua y nutrientes. El método de aplicación fue mediante goteros que descargaban 2,0 L/hora por planta. Se utilizó un dosificador (Dosatron) con una proporción de inyección de 1:64. Se preparó las mezclas de sales solubles los días lunes, miércoles y viernes a partir del día de trasplante.

La cosecha se efectuó del 1° de noviembre de 2010 al 14 de abril de 2011, y se realizó un total de 20 cosechas en forma semanal, recolectando todos los frutos con al menos un 50 % de madurez.

Las variables evaluadas para la planta y el fruto se seleccionaron a partir de la lista de descriptores para *Capsicum* del IPGRI:

Forma de la hoja: se determinó según el descriptor 7.1.2.15. Se tomaron cuatro hojas por repetición y por observación se clasificaron en: deltoide, oval o lanceolada. Esta evaluación se efectuó al final del ciclo del cultivo.

Altura de la planta: se midió la altura de las cuatro plantas de la unidad experimental al final del ciclo del cultivo, a los 209 días después de trasplante (ddt), desde la base del tallo de la planta hasta el último meristemo de crecimiento apical, se registró el dato en metros y se obtuvo el promedio; se utilizó una cinta métrica marca Assist, modelo 32G-8025, con una capacidad de 8,0 m y una incertidumbre de 0,1 cm.

Área foliar: a los 182 ddt se tomaron ocho hojas de cada repetición, ubicadas en la parte central de la planta. Cada muestra se sometió a análisis mediante un medidor de área foliar Modelo Li-3100C, se registró el dato en centímetros cuadrados, y se calculó el promedio.

Diámetro del tallo: se midió el diámetro del tallo a las cuatro plantas de cada unidad experimental a los 182 ddt, se registró el dato en milímetros, y se obtuvo el promedio; se utilizó un calibrador digital milimétrico marca Mitutoyo, modelo CD, con una capacidad de 15,00 cm y una incertidumbre de 0,01 cm. La medición se realizó en la parte media del tallo de cada planta, antes de la primera bifurcación, según el descriptor 7.1.2.10.

Longitud del tallo: se midió la longitud del tallo a los 48 ddt, a las cuatro plantas de cada unidad experimental, y se obtuvo el promedio. La medición se realizó desde la base del tallo de la planta hasta la zona donde inicia la bifurcación del mismo; se utilizó una cinta métrica, y se registró el dato en centímetros.

Para la evaluación del fruto, se seleccionaron 20 frutos de cada genotipo y se evaluó lo siguiente:

Forma del fruto: por observación se clasificó cada fruto por su forma en: cónico, cuadrangular o rectangular.

Color del fruto: se registró el color cuando el fruto presentó un 100 % de madurez.

Forma del ápice del fruto: se clasificó el ápice del fruto por observación en: puntudo, romo, hundido, o hundido y puntudo, según el descriptor 7.2.2.15.

Forma del fruto en unión con el pedicelo: se clasificó la forma del fruto en unión con el pedicelo por observación en: agudo, obtuso, truncado, cordado, o lobulado, según el descriptor 7.2.2.13.

Ancho del fruto: a cada fruto se le midió su dimensión máxima en la zona ecuatorial con un calibrador digital milimétrico, se anotó el dato en centímetros, y se obtuvo el promedio.

Longitud del fruto: a cada fruto se le midió su dimensión desde el extremo proximal al extremo distal, con un calibrador digital milimétrico, se anotó el dato en centímetros, y se obtuvo el promedio.

Relación largo/ancho del fruto: con base en los datos de longitud y ancho de cada fruto, se calculó la relación largo/ancho del mismo, y se obtuvo el promedio.

Espesor de la pared del fruto: se realizó un corte transversal en la zona ecuatorial del fruto, y con la ayuda de un calibrador digital milimétrico se midió el espesor de la pared en la parte más ancha, se anotó el dato en milímetros, y se obtuvo el promedio.

Se utilizó un diseño experimental irrestricto al azar con dos repeticiones por tratamiento. La unidad experimental estuvo constituida por dos sacos con cuatro plantas cada una, y la parcela útil se formó por las cuatro plantas ubicadas en la posición central de la misma. Las variables cuantitativas (excepto el área foliar y la relación largo/ancho del fruto) se sometieron a un análisis de varianza, y se utilizó la prueba de Duncan ($p \le 0,05$) para confirmar o descartar diferencias significativas entre genotipos.

Resultados y discusión

En el cuadro 2 se presentan las características morfológicas cualitativas de la planta y del fruto para los 12 genotipos evaluados.

Cuadro 2. Características morfológicas cualitativas de la planta y del fruto, para los 12 genotipos de chile dulce.

	PLANTA	FRUTO			
GENOTIPO	FORMA DE LA HOJA	FORMA	COLOR	FORMA DEL ÁPICE	UNIÓN CON EL PEDICELO
Cortés	Deltoide	Cónico	Rojo	Romo	Cordado
FBM-1	Oval	Cónico	Rojo	Romo	Cordado
FBM-2	Oval	Cónico	Rojo	Romo	Cordado
FBM-3	Oval	Cónico	Rojo	Romo	Cordado
FBM-7	Oval	Cónico	Rojo	Romo	Lobulado
FBM-11	Oval	Cónico	Rojo	Romo	Cordado
FBM-12	Oval	Cónico	Rojo	Romo	Cordado
Jumbo	Oval	Cónico	Rojo	Puntudo	Lobulado
Lamuyo Amarillo	Deltoide	Cónico	Amarillo	Puntudo	Cordado
Lamuyo Experimental	Oval	Cónico	Rojo	Puntudo	Lobulado
Tiquicia	Oval	Cónico	Rojo	Puntudo	Lobulado
V-701	Oval	Cónico	Rojo	Hundido	Cordado

Se determinaron dos formas diferentes de la hoja: oval (10 genotipos) y deltoide (2 genotipos). Todos los genotipos mostraron frutos con forma cónica de color rojo, excepto el Lamuyo Amarillo cuyo fruto es de color amarillo.

Con respecto a la forma en la unión del fruto con el pedicelo, se presentaron las formas cordado (8 genotipos) y lobulado (4 genotipos). Esta variable es importante dado que en esa zona podrían acumularse productos químicos o agua en los genotipos con forma lobulada (y no en los de forma cordado), lo que puede favorecer las enfermedades y afectar así la calidad del fruto.

La altura de la planta varió significativamente entre los genotipos (cuadro 3); el FBM-3 presentó las plantas más altas (1,71 m). Todos los materiales genéticos producidos por la Universidad de Costa Rica tuvieron valores significativamente superiores al obtenido por los genotipos Jumbo y Lamuyo Amarillo, que presentaron el menor valor para esta variable (1,26 m).

Cuadro 3. Altura de la planta a los 209 ddt, para los 12 genotipos de chile dulce.

GENOTIPO	ALTURA (M)	
FBM-3	1,71	a
FBM-7	1,64	ab
FBM-2	1,57	abc
FBM-12	1,57	abc
FBM-11	1,56	abcd
FBM-1	1,53	bcde
Tiquicia	1,43	bcdef
V-701	1,37	cdef
Cortés	1,37	cdef
LamuyoExperimental	1,31	def
Jumbo	1,26	f
Lamuyo Amarillo	1,26	f

Nota: Letras distintas indican diferencias significativas (p \leq 0,05), según la prueba de Duncan.

En chile dulce, se tienen informes de que la altura de la planta puede variar entre 0,49 y 2,24; los resultados obtenidos en la presente investigación se ubican dentro de dicho rango.

En el cuadro 4 se presentan los datos de área foliar de los genotipos de chile dulce evaluados; el FBM-2 fue el que presentó el mayor valor para esta característica (158,91 cm²). Los genotipos de la Universidad de Costa Rica fueron los que presentaron los mayores valores, a excepción de FBM-11 y FBM-12 que obtuvieron un valor menor que el alcanzado por el genotipo Tiquicia.

Cuadro 4. Área foliar para los 12 genotipos de chile dulce.

GENOTIPO	ÁREA FOLIAR (cm²)
FBM-2	158,91
FBM-3	155,11
FBM-7	152,32
FBM-1	141,14
Tiquicia	139,86
FBM-11	138,88
FBM-12	134,57
V-701	134,53
Lamuyo Experimental	130,62
Lamuyo Amarillo	120,58
Jumbo	117,35
Cortés	100,49

En el cuadro 5 se presentan los resultados del diámetro del tallo para los diferentes genotipos.

Solamente se presentaron diferencias significativas entre el genotipo Jumbo (que obtuvo el menor diámetro del tallo), y el Lamuyo Amarillo y todos los materiales genéticos de la Universidad de Costa Rica.

Cuadro 5. Diámetro del tallo de la planta a los 182 ddt, para los 12 genotipos de chile dulce.

GENOTIPO	DIÁMETRO DEL TAL	LO (mm)
FBM-3	15,83	a
FBM-12	15,79	a
Lamuyo Amarillo	15,76	a
FBM-7	15,69	a
FBM-2	15,06	a
FBM-11	14,95	a
FBM-1	14,89	a
Lamuyo Experimental	14,66	ab
Tiquicia	14,45	ab
Cortés	13,76	ab
V-701	13,68	ab
Jumbo	12,51	b

Nota: Letras distintas indican diferencias significativas (p ≤ 0,05), según la prueba de Duncan.

El diámetro del tallo de la planta parece indicar que entre mayor sea este valor, mayor es la capacidad del tallo para soportar el peso de órganos principales como ramas, flores y frutos, y por lo tanto disminuye el riesgo de que el mismo se quiebre por un exceso de peso de la parte aérea de la planta.

Según diversas investigaciones, en chile dulce el diámetro del tallo puede variar entre 14,0 y 27,3. En este trabajo la mayor parte de las variedades obtuvo para esta variable un valor ubicado dentro de dicho rango, pero los genotipos Cortés, V-701 y Jumbo presentaron valores menores (entre 12,51 y 13,76 mm).

En el cuadro 6 se presentan los resultados con respecto a la variable longitud del tallo; el valor más alto lo obtuvo el genotipo Jumbo (36,88 cm) y el más bajo lo obtuvo Cortés (25,75 cm).

Cuadro 6. Longitud del tallo de la planta a los 48 ddt, para los 12 genotipos de chile dulce.

GENOTIPO	LONGITUD DEL TA	ALLO (cm)
Jumbo	36,88	a
FBM-11	33,00	ab
FBM-1	32,38	abc
FBM-7	31,75	abcd
FBM-12	31,38	bcd
Lamuyo Experimental	30,38	bcd
FBM-3	30,38	bcd
Tiquicia	30,25	bcd
Lamuyo Amarillo	29,00	bcd
FBM-2	28,50	cd
V-701	26,13	d
Cortés	25,75	d

Nota: Letras distintas indican diferencias significativas (p \leq 0,05), según la prueba de Duncan.

En el cuadro 7 se presentan los resultados para el ancho del fruto de los genotipos; el que presentó el menor valor fue Tiquicia (4,97 cm), y el mayor valor lo obtuvo FBM-2 (6,19 cm).

Cuadro 7. Ancho del fruto para los 12 genotipos de chile dulce.

GENOTIPO	ANCHO DEL FRUTO (cm)	
FBM-2	6,19	a
Cortés	6,12	a
FBM-12	5,98	a
V-701	5,94	a
FBM-7	5,92	a
FBM-1	5,91	a
FBM-11	5,83	ab
FBM-3	5,78	ab
Jumbo	5,73	ab
Lamuyo Amarillo	5,56	abc
Lamuyo Experimental	5,19	bc
Tiquicia	4,97	c

Nota: Letras distintas indican diferencias significativas (p ≤ 0,05), según la prueba de Duncan.

En chile dulce, diversos investigadores han encontrado que el ancho del fruto puede variar entre 4,14 y 10,2. Los valores obtenidos en la presente investigación se encuentran dentro de dicho rango.

En el cuadro 8 se presentan los resultados para la longitud del fruto de los genotipos; el Lamuyo Amarillo alcanzó el mayor valor para esta variable (19,43 cm), y este resultado fue significativamente superior al alcanzado por todos los demás genotipos.

Entre los materiales genéticos de la Universidad de Costa Rica, el FBM-7 mostró diferencias significativas con respecto a FBM-2 y FBM-11 para esta característica.

Cuadro 8. Longitud del fruto para los 12 genotipos de chile dulce.

GENOTIPO	LONGITUD DEL	FRUTO (cm)
Lamuyo Amarillo	19,43	a
Cortés	14,08	b
Jumbo	13,62	bc
FBM-7	13,31	bcd
V-701	13,00	bcde
Lamuyo Experimental	12,92	bcde
FBM-1	12,81	cde
FBM-3	12,24	def
FBM-12	12,11	def
Tiquicia	11,41	f
FBM-11	11,39	f
FBM-2	11,24	f

Nota: Letras distintas indican diferencias significativas (p \leq 0,05), según la prueba de Duncan.

Los genotipos cuya longitud promedio del fruto fue menor a 12 cm (Tiquicia, FBM-11 y FBM-2) muestran limitaciones para obtener frutos de primera calidad (J. Monge-Pérez, datos sin publicar), dado que esa es la medida mínima de longitud del fruto para dicha categoría de calidad.

Según diversas investigaciones, en chile dulce la longitud el fruto puede variar entre 5,0 y 20,9 cm. Los resultados obtenidos en la presente investigación se ubican dentro de este rango.

En el cuadro 9 se presentan los resultados para la relación largo/ancho del fruto. El genotipo Lamuyo Amarillo presentó el mayor valor para esta variable, debido principalmente a que es el que mostró la mayor longitud de fruto. Los materiales genéticos de la Universidad de Costa Rica y el V-701 fueron los que obtuvieron los menores valores para esta característica.

Cuadro 9. Relación largo/ancho del fruto para los 12 genotipos de chile dulce.

GENOTIPO	RELACIÓN LARGO/ANCHO DEL FRUTO
Lamuyo Amarillo	3,49
Lamuyo Experimental	2,49
Jumbo	2,38
Cortés	2,30
Tiquicia	2,30
FBM-7	2,25
V-701	2,19
FBM-1	2,17
FBM-3	2,12
FBM-12	2,03
FBM-11	1,95
FBM-2	1,82

En el cuadro 10 se presentan los resultados de espesor de la pared del fruto; los datos variaron entre 4,06 mm (Lamuyo Experimental) y 5,44 mm (Cortés). Los genotipos Tiquicia y Cortés mostraron valores estadísticamente superiores con respecto a FBM-7 y Lamuyo Experimental para esta variable; los materiales genéticos de la Universidad de Costa Rica mostraron valores relativamente bajos, y no mostraron diferencias estadísticas entre ellos. En chile

dulce, se tienen informes de que el espesor de la pared del fruto puede variar entre 3,30 y 8,93 mm; los datos obtenidos en la presente investigación se ubican dentro de este rango.

Esta característica es importante a nivel del comportamiento poscosecha del chile dulce, pues conforme aumenta el espesor de la pared del fruto, mejora la firmeza del mismo.

Cuadro 10. Espesor de la pared del fruto para los 12 genotipos de chile dulce.

GENOTIPO	ESPESOR DE LA PARED DEL FRUTO (mm)	
Cortés	5,44	a
Tiquicia	4,92	ab
Jumbo	4,81	abc
V-701	4,68	bc
FBM-2	4,49	bc
Lamuyo Amarillo	4,46	bc
FBM-11	4,41	bc
FBM-12	4,26	bc
FBM-1	4,24	bc
FBM-3	4,18	bc
FBM-7	4,13	С
Lamuyo Experimental	4,06	С

Nota: Letras distintas indican diferencias significativas (p ≤ 0,05), según la prueba de Duncan.

Conclusiones y recomendaciones

La caracterización morfológica y agronómica de materiales genéticos de plantas es un proceso necesario para generar información relevante tanto para los productores como para los fitomejoradores. Con estos datos cada productor interesado puede tomar las mejores decisiones con respecto a cuál genotipo sembrar, según el mercado al que se quiere dirigir la producción, el rendimiento esperado, la calidad requerida, y otras características.

Igualmente esta caracterización es sumamente importante para orientar a los fitomejoradores en relación a la expresión fenotípica de los diferentes materiales genéticos, y definir su trabajo futuro de selección y generación de genotipos.

Sin embargo, hay que tomar en cuenta que varias de las características evaluadas en esta investigación son cuantitativas, por lo que se ven influenciadas por factores ambientales y de manejo; por lo tanto, los datos obtenidos deben tomarse como preliminares, y se recomienda evaluar estos genotipos también bajo otras condiciones ambientales, con el fin de tener un mejor criterio en cuanto al comportamiento productivo de los mismos.

Referencia bibliográfica

Elizondo-Cabalceta, E. y Monge-Perez, J. E. (2016). Caracterización morfológica de 12 genotipos de chile dulce (*Capsicum annuum* L.) cultivados en invernadero en Costa Rica. Tecnología en Marcha (Costa Rica). 29(3): 60-72.

