Boletín ProNAP 12(70) May-Jun-2018

NUEVO MODELO DE INVERNADERO PARA MAXIMIZAR RENOVACIÓN DE AIRE

Alfonso Martínez-Alés García <u>ama@intraglobal.esn</u> AMA-Intra Global, España

Debido a los avances cada vez más tecnificados en el proceso de producción de cultivos, las necesidades para control de clima dentro de los invernaderos son también cada vez mayores.

El desarrollo vegetativo de un cultivo depende de la condiciones climáticas hay factores fisiológicos (traspiración y fotosíntesis) y factores físicos (luz, temperatura, humedad, concentración de CO₂ y la circulación de aire.

La circulación de aire dentro de un invernadero se mide por medio de las renovaciones de aire. Para obtener unas condiciones climáticas adecuadas para el desarrollo vegetativo dentro del invernadero, son necesarias entre 60 y 80 renovaciones de aire cada hora para poder evacuar el vapor de agua sobrante y bajar la temperatura, así como disminuir la humedad.

Con esto en mente, Global Invernaderos Greenhouse ha diseñado un nuevo invernadero con un sistema de ventilación MODELO INTRA-GLOBAL, que permite optimizar todos los parámetros más exigentes de un cultivo intensivo en invernadero.

Este modelo presenta un sistema de ventilación que permite tener en la cúpula del invernadero plástico o malla, según las necesidades de cultivo de forma automática; el número de renovaciones de aire/hora se multiplica por tres de forma natural **por convección.**

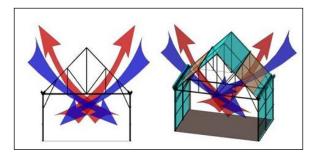


Figura 1. Diagrama de flujo de aire en una instalación tipo invernadero

El sistema de apertura y cierre en la cúpula se resuelve mediante perfiles de aluminio para evitar la oxidación en climas húmedos, y accionados mediante moto-reductores, para tener una ventana regulada mediante control climático.

En la cubierta del invernadero llevará polietileno de baja densidad de 800 galgas o 200 micras y malla antitrips de 20x13 trasparente cristal.

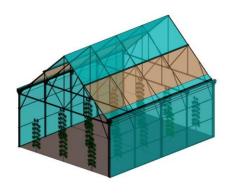


Figura 2. Esquema general del modelo

Boletín ProNAP 12(70) May-Jun-2018

Al no tener brazos de ventana con cremalleras, el sistema de ventilación permite tener la ventana abierta hasta con 47 Km/h. Además, debido a la pendiente de la cúpula, la condensación que se produce dentro del invernadero en el polietileno no cae en el cultivo y se recoge en las canales (figura 3).

Figura 3. Vista del interior del modelo.

El polietileno de las ventanas se encuentra por debajo de la malla, lo cual la protege de la radiación solar y por tanto, se reduce de la degradación del polietileno un 38 %, lo que permitiría extender la vida del plástico una campaña más en términos funcionales

En los climas muy húmedos y calurosos, lo máximo a lo que se puede reducir la humedad dentro de un invernadero por medios naturales, es a los porcentajes de humedad relativa que tenemos en el exterior.

Para que ese exceso de humedad no induzca enfermedades fúngicas a los cultivos, es necesario que las renovaciones de aire dentro de un invernadero aumenten. Con este nuevo tipo de ventilación INTRA-GLOBAL, se consigue una máxima renovación de aire con bajas velocidades de viento.

Para la producción de plántulas, la ventilación INTRA-GLOBAL es la mejor solución ya que abre un amplio abanico de posibilidades que permiten cultivar la plántula bajo plástico cuando está en los primeros estadios de crecimiento y combinarla con cubierta de malla sin tener que cambiar de lugar planta. Con ello lo que conseguimos una adaptación más homogénea hacia las condiciones externas de cultivo.

Dentro de un invernadero, los rangos óptimos de temperatura y humedad relativa, pueden ser representados dentro de una gráfica como parámetros lineales dentro de unos óptimos, en los cuales, la planta puede evitar situaciones de estrés como se observa en la figura 4.

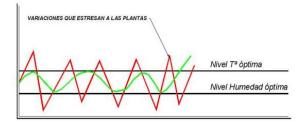


Figura 4. Comportamiento de las variables y variaciones promotoras de estrés.

Son los cambios rápidos de temperatura y humedad los que estresan la planta. Son por tanto necesarias aperturas graduales según el tiempo de medición y las lecturas que envíen las sondas para ir manteniendo los parámetros en los óptimos temperatura y humedad.

